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To a linear differential equation with polynomial coefficients over the rational numbers one
can attach, for all prime numbers p, a linear map called the p-curvature. The Grothendieck p-
curvature conjecture asserts that the algebraicity of a full basis of solutions of such a differential
equation is equivalent to the vanishing of the p-curvatures for almost all prime numbers p. In 1974
Honda provided a proof of this conjecture for order one equations [2], by reducing the problem to
a theorem of Kronecker [3], which provides a local-global criterion for the splitting of polynomials
over the rational numbers. In 1985 Chudnovsky and Chudnovsky gave a new proof of Kronecker’s
result [1], and with it of Honda’s result, using Padé approximation.

In this talk I will explain how to use the proof of the Chudnovsky brothers to make Honda’s
result effective. More precisely, given a linear differential equation of order one with polynomial
coefficients over the rational numbers we deduce an upper bound on the number of p-curvatures
to be computed in order to decide the algebraicity of all solutions of the equation.

This talk is based on ongoing joint work with Lucas Pannier.
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