Characteristic polynomial of linearized polynomials

Luca Bastioni

University of South Florida, USA

30th Applications of Computer Algebra - ACA 2025

Let *q* be a prime power, and \mathbb{F}_q be the finite field with *q* elements. Let *m*, *n*, *r* be positive integers. A polynomial of the form $L(Z) = \sum_{i=0}^{r} a_i Z^{q^i} \in \mathbb{F}_{q^m}[Z]$ is called a linearized polynomial. This type of polynomials is particularly important in coding theory, specifically for the theory of rankmetric codes, where they are used to construct a fundamental family of maximum rank-distance (MRD) codes, called Gabidulin codes. Linearized polynomials are also deeply connected to Drinfeld module's theory and recently, as shown in [1], such connection has been used to construct a new infinite family of optimal rank-metric codes with rank-locality, improving some previous parameters and divisibility conditions present in the construction of [3]. Therefore, it comes natural to investigate properties of linearized polynomials in more depth and in terms of Drinfeld modules. An obvious property is that each linearized polynomial can be seen as an \mathbb{F}_q -linear map, and so it makes sense to talk about the characteristic polynomial of a linearized polynomial. In this talk, we show how the theory of Drinfeld modules, together with the theory of linear recurrence sequences, can be used to compute the characteristic polynomial $C_L^{(n)}$ of the \mathbb{F}_q -linear map associated to a linearized polynomial $L \in \mathbb{F}_{q^m}[Z]$ acting on an extension $\mathbb{F}_{q^{m_n}}$ of \mathbb{F}_{q^m} . Then, we provide a new algorithm to compute $C_L^{(n)}$, and we show that its running time is $O(n \log^2(n))$ in terms of \mathbb{F}_q operations. This means that, when $n \gg 0$, our algorithm outperforms any other standard algorithm known in literature, since they instead have a running time of $O(n^{\omega} \log(n))$ where $2 \le \omega \le 3$ (see for example [4] ??).

This is a joint work with Giacomo Micheli and Shujun Zhao.

References

- Luca Bastioni, Mohamed O. Darwish, Giacomo Micheli. Optimal Rank-Metric Codes with Rank-Locality from Drinfeld Modules. arXiv:2407.06081, 2024.
- [2] Ran Duan, Hongxun Wu, Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 2129–2138, 2023.
- [3] Swanand Kadhe, Salim El Rouayheb, Iwan Duursma, Alex Sprintson. Rank-metric codes with local recoverability. In 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, Sept. 2016.
- [4] Walter Keller-Gehrig. Fast algorithms for the characteristics polynomial. *Theoretical computer science*, 36:309–317, 1985.
- [5] Clément Pernet, Arne Storjohann. Faster algorithms for the characteristic polynomial. In *Proceedings of the 2007 international symposium on Symbolic and algebraic computation*, pages 307–314. Association for Computing Machinery, 2007.
- [6] Vincent Neiger, Clément Pernet. Deterministic computation of the characteristic polynomial in the time of matrix multiplication. *Journal of Complexity*, 67:101572, 2021.