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We discuss the problem of fitting reduced data Qm = {qi}mi=1 in arbitrary Euclidean space
En. In our setting the interpolation knots {ti}mi=0 (with qi = γ (ti)) are unknown and need to be
compensated by certain T̂ = {̂ti}mi=0 (see e.g. [1]). Various fitting schemes combined with some
recipes for T̂ were studied e.g. in [1], [2] and [3] (for dense Qm) or [4] and [5] (for sparse Qm).
In case of Qm dense, the convergence rate (and its sharpness) for a selected interpolation scheme
γ̂ (based on Qm and T̂ ) in approximating γ is a task to examine - see e.g. [2], [3] and [4]. We
analyze the problem of partially fitting Qm by merely interpolating Q̂m = {q0, q3, q6, . . . , qm=3k}
with piecewise cubic Bézier curve γ̂ B (see [6]). The other points serve only as control points. A
sharp quadratic order in γ estimation by γ̂ ◦ φ (with φ : [0, T] → [0, T̂]) is proved. Numerical and
symbolic computation in Mathematica is used to confirm the latter.
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