On the maximal spread of symmetric Bohemian matrices

Robert M. Corless

University of Western Ontario, Canada

30th Applications of Computer Algebra - ACA 2025

Let *A* be a square matrix with entries in \mathbb{R} . The spread of *A* is defined as the maximum of the distances between the eigenvalues of *A*. Let $S_m[a, b]$ denote the set of all $m \times m$ symmetric matrices with entries in the real interval [a, b] and let $S_m\{a, b\}$ be the subset of $S_m[a, b]$ of Bohemian matrices with population from only the extremal elements $\{a, b\}$. S. M. Fallat and J. J. Xing in 2012 proposed the following conjecture: the maximum spread in $S_m[a, b]$ is attained by a rank 2 matrix in $S_m\{a, b\}$. X. Zhan had proved previously that the conjecture was true for $S_m[-a, a]$ with a > 0. We will show how to interpret this problem geometrically, via polynomial resultants, in order to be able to treat this conjecture from a computational point of view. This will allow us to prove that this conjecture is true for several formerly open cases.

This is joint work with Neil Calkin, Laureano Gonzalez-Vega, J. Rafael Sendra, and Juana Sendra.