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ACA conferences

The ACA conference series is devoted to promoting all kinds of computer algebra applications,
and encouraging the interaction of developers of computer algebra systems and packages with
researchers and users (including scientists, engineers, educators, and mathematicians).
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Foreward

Welcome to the 30th annual conference on Applications of Computer Algebra. This series was
founded by Stanly Steinberg and Michael Wester in 1995, with the first conference being held May
16–19 in Albuquerque, NewMexico, USA at the University of NewMexico. At the time, Stan saw a
need for a computer algebra applications conference, and enlisted Michael, his newly minted PhD,
to become co-chair. We never dreamed that this first meeting would spawn 29 more conferences,
and are both amazed and pleased.

ACA has been a successful experiment. As espoused in the online ACA Traditions,

ACA is a semi-chaotic organization that survives on volunteerism and not being overly
encumbered by too many rules. The primary mission of ACA conferences is to foster
interaction among a diverse group of developers and users in a variety of disciplines.
Interaction can occur on many different levels at once (technical, administrative, so-
cial) and all are important in establishing relationships that will benefit the commu-
nity, immediately and over time. All these levels should be taken into account when
preparing a conference (high quality talks, good conference organization, social activ-
ities). However, we also discourage formalizing too many specifics and prefer letting
the conference chairs decide how to best implement the above goals.

ACAs have been held in a variety of locations around the world, reflecting the diversity of the
participants that come to these meetings:

North America
Canada [2], Cuba, United States [Hawaii, Michigan, New Mexico (2), New York, North Car-
olina, Texas (2)]

Europe
Albania, Austria [2], Bulgaria [2], Czechia, Germany, Greece [3], Poland, Russia, Spain [3]

Asia
Israel, Japan, Turkey

worldwide
virtual

The current meeting, ACA 2025, to be held in Heraklion, Crete, Greece, looks to have possibly
a record number of sessions proposed (18) and an experienced cast of organizers: Eleni Tzanaki
(general chair); George Kapetanakis and Zafeirakis Zafeirakopoulos (program chairs). There are
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FOREWARD

also four invited speakers (Gianira Nicoletta Alfarano, Ioannis Emiris, Daniel Panario, Veronika
Pillwein). The co-chairs of the ACA Working Group (ACA-WG), who provide continuity to the
conference series, are Michael Wester and Ilias Kotsireas.

An important aspect of the ACA conferences series is the recently established award for early
career researchers, namely the ACA-ERA. The year 2025 marks the 5th anniversary of this award.
The award consists of a certificate and a financial stipend. The award has been generously spon-
sored by:

• CARGO Lab, Wilfrid Laurier University, Waterloo, Ontario, Canada

• Maplesoft, Waterloo, Ontario, Canada

• Wolfram Research, Champaign, Illinois, USA

• ACM SIGSAM, New York, USA

• Center for Computer Mathematics, China

• SBA Research, Austria

On a final note, 2025 is a numerically interesting year:

• 2025 = 452 = 52 · 92

• 2025 = 272 + 362 = 402 + 202 + 52

• 2025 =
(∑9

n=1 n
)2

=
∑9

n=1 n
3

• 2025 =
∑45

n=1(2n− 1)

And so, ACA 2025, will be a symbolically (and symbolically-numerically) interesting meeting!

Michael J. Wester, Stanly L. Steinberg and Ilias Kotsireas
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Plenary talks

Skew-polynomial rings and algebraic coding theory

Gianira N. Alfarano
Rennes University, France

Cyclic codes are one of the most studied families of block codes in classical coding theory, be-
cause they provide the algebraic framework for the construction of codes such as Reed-Solomon
and BCH codes. A natural generalization of these codes are the so-called skew-cyclic codes. They
are based on skew-polynomial rings in one indeterminate. The only difference from a commutative
polynomial ring is that in the skew version the indeterminate does not commute with its coeffi-
cients. In this talk, we will first discuss the applications of the theory of skew-polynomial rings to
algebraic coding theory. We will discuss some recent results pertaining to the distance of skew-
cyclic codes in Hamming, rank and sum-rank metrics. The presentation is based on literature on
skew-polynomial rings by Ore (1933) and Lam/Leroy (between 1988 and 2012), as well as literature
on skew-cyclic codes by Boucher/Ulmer et al. (between 2007 and 2014), and on joint work with
Lobillo, Neri and Wachter-Zeh (2021-2022).
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A sparse overview of sparse elimination

Ioannis Emiris
ATHENA RC and University of Athens, Greece

From its origins in the 1970’s until today, sparse, or toric, elimination theory has evolved into a
standard approach in algebraic variable elimination, offering new root counts as well as new algo-
rithmic methods important in bounding complexity and leading to practical results for polynomial
system solving. The theory’s connections to convex geometry, linear algebra, algebraic combi-
natorics, and tropical geometry offer avenues for further investigation. In this talk we survey
complexity and algorithmic aspects, while including some recent results and some open questions
for future research.

Iterating Generalized Cyclotomic Mappings of Finite Fields

Daniel Panario
Carleton University, Canada

When we iterate functions over finite structures, there is an underlying natural functional
graph. For a function f over a finite field Fq, this graph has q nodes and a directed edge from
vertex a to vertex b if and only if f(a) = b. It is well known, combinatorially, that functional
graphs are sets of connected components, components are directed cycles of nodes, and each of
these nodes is the root of a directed tree.

Some functions over finite fields when iterated present strong symmetry properties. These sym-
metries allow mathematical proofs of some dynamical properties such as the period and preperiod
of a generic element, (average) “rho length” (number of iterations until a cycle is formed), number
of connected components, cycle lengths, and permutational properties (including the cycle decom-
position).

We briefly survey the main problems and results in this area. Then, we concentrate on the func-
tional graph of generalized cyclotomic mappings of finite fields. These are a natural and manage-
able generalization of monomial functions. We study periodic points, cycle structure, and rooted
trees attached to periodic points. We provide both theoretical results on the structure of their
functional graphs as well as algorithms for solving basic problems, such as parametrizing the con-
nected components of the graph, or describing the structure of a connected component given by a
representative vertex.

Based on the following papers:

1. “A survey on iterations of mappings over finite fields”, R. Martins, D. Panario and C.Qureshi;
Radon Series on Computational and Applied Mathematics de Gruyter, 23, 135-172, 2019.

2. “Functional graphs of generalized cyclotomic mappings of finite fields”, A. Bors, D. Panario
and Q. Wang; to appear in Memoirs of the European Mathematical Society; 188 pages.
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Sequences and series beyond holonomic
Veronika Pillwein

Johannes Kepler University - RISC, Austria

Holonomic objects, whether infinite sequences or formal power series, can be represented with
finite data, are closed under several operations, and form a class for which many algorithms have
been developed and implemented. These expressions appear in many applications in Mathematics,
Computer Science or Natural Sciences, but there is also a world outside of holonomic.

In this talk, we first recall some of the classical algorithms before moving on to the non-
holonomic universe. We present some subsets, that can be represented with finite data, are closed
under certain operations and/or form a class for which algorithms have been recently developed
and implemented.
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SPECIAL SESSION 1

Computer Algebra in Education

Education has become one of the fastest growing application areas for computers in general and
computer algebra in particular. Computer Algebra Systems (CAS) and Dynamical Geometry Sys-
tems (DGS) make for powerful teaching and learning tools within mathematics, physics, chemistry,
biology, economics, etc. Among them are: (a) commercial “heavy weights” such as Casio Class-
Pad 330, Magma, Maple, Mathematica, MuPAD, TI NSpire CAS, and (b) free software/open source
systems such as Axiom, Desmos, Euler, Fermat, wxMaxima, Reduce, and rising stars such as Ge-
oGebra, SageMath, SymPy and Xcas (the swiss knife for mathematics), not to mention systems
like Derive (discontinued commercially since 2007) and the essential WolframAlpha, which are
important resources for users of symbolic systems.

The goal of this session is to exchange ideas, discuss classroom experiences, and to explore sig-
nificant issues relating to CAS tools/use within education. Subjects of interest for this session will
include new CAS-based teaching/learning strategies, curriculum changes, new support materials,
assessment practices from all scientific fields, and experiences of joint use of applied mathematics
and CAS including dynamic geometry.

Generative Artificial Intelligence has entered the world very strongly. The Education commu-
nity has begun to explore the pros and cons of this new technology. We also welcome experiments
and research about its usage, either alone or in collaboration with CAS and DGS.

We emphasize that all levels of education are welcome, from high school to university, and that
all domains are welcome, including teacher training, engineer training, etc.

Session organizers

• Michel Beaudin (ETS, Canada)
• Michael Wester (University of New Mexico, USA)
• Thierry (Noah) Dana-Picard (Jerusalem College of Technology, Israel)
• Alkis Akritas (University of Thessaly, Greece)
• José Luis Galán García (Universidad de Málaga, Spain)
• Elena Varbanova (Technical University of Sofia, Bulgaria)
• Eli Bagno (Jerusalem College of Technology, Israel)
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1.1 Automatic Grading of Online Graph Plotting Problems
Chieko Komoda

National Institute of Technology, Kurume College, Japan

In mathematics education, students are frequently tasked with drawing graphs that accurately
represent given mathematical formulas. This paper presents a novel method for the automated
grading of student-drawn graphs within a learning management system (LMS). Our work specif-
ically utilized Bézier curves and Oshima spline curves (a variant derived from Bézier curves), de-
veloping assessment questions with the aid of the dynamic geometric graph software “KeTCindy”.

1.2 Educational Applications of Solving Sangaku Problems by the
MNR Method with Maxima

Koji Nishiura
National Institute of Technology, Fukushima College, Japan

This paper explores the educational potential of solving traditional Japanese Sangaku prob-
lems using the MNR method in conjunction with the computer algebra system Maxima. Sangaku,
geometric problems inscribed on wooden tablets during the Edo period, provide rich and challeng-
ing content for mathematical exploration. The MNR method allows for symbolic representation
of geometric relationships within triangles, enabling efficient solution strategies through Maxima.
By engaging students in the process of formulating problems, interpreting algebraic output, and
visualizing geometric structures, this approach fosters deeper mathematical understanding and
programming literacy. We demonstrate how this method can contribute to developing students’
problem-solving skills, logical reasoning, and sustained interest in mathematics through culturally
significant and intellectually stimulating content.

1.3 CAS and Improper Integral - a case study
Magdalena Skrzypiec

Maria Curie-Sklodowska University, Poland

The problem of teaching improper integrals with CAS is not new. I was considered for example
in [1], [2] and [3]. During this talk examples of two improper integrals∫ ∞

0

∫ ∞

0

sin(x2 + y2)dxdy and
∫ ∞

0

∫ ∞

0

cos(x2 + y2)dxdy

will be considered. We will discuss the problem of convergence of these integrals. We will also
analyze and discuss results obtained using different CAS and AI tools.

References
[1] G. Aguilera, J. L. Galán, M. Á. Galán, Y. Padilla, P. Rodríguez, R. Rodríguez. Teaching improper integrals with

CAS, ACA, 2015.
[2] J. L. Galán-García, G. Aguilera-Venegas, M. Á. Galán-García, P. Rodríguez-Cielos, I. Atencia-Mc.Killop. Im-

proving CAS capabilities: new rules for computing improper integrals, Appl. Math. Comput. 316 (2018),
525–540.
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[3] J. L. Galán-García, G. Aguilera-Venegas, M. Á. Galán-García, P. Rodríguez-Cielos, I. Atencia-Mc.Killop, Y.
Padilla-Domínguez, Yolanda, R. Rodríguez-Cielos. Enhancing Cas improper integrals computations using ex-
tensions of the residue theorem, Adv. Comput. Math. 45 (2019), no. 4, 1825–1841.

1.4 An educational proposal to interpret linear systems
Margherita Guida

Università di Napoli Federico II, Italy

During the process of learning mathematics in secondary education, some students encounter
difficulties with various algebraic and geometrical concepts, for example they have problems to
interpret and to solve linear systems. Different studies indicate that the student’s comprehension
of these knowledges is mainly technical, rote-based and non-meaningful. In this talk I suggest the
design and the implementation of an educational proposal focused on improving student’s com-
prehension of these arguments. In particular, I intend to present Cimmino’s reflection algorithm
for the numerical solution of linear systems. This method is striking because of its simplicity and
elegance. Unlike so many other algorithms for solving linear equations, it is based on a geometrical
construction rather than on algebraic manipulations. Moreover, a probabilistic argument is also
devised to improve the Cimmino’s algorithm. This subject is an opportunity to show students how
linear algebra can interact fruitfully not only with algebra, geometry, and numerical analysis, but
also with probability theory and methods.

At the time it was conceived, the greatest attraction of the method was probably the fact that
the method is always convergent. For a long time (several decades) Cimmino’s method, in spite of
its virtues, did not see much use. Since the early 1980s, though, an increasing number of authors
have returned to Cimmino’s method. In fact, it has been shown that this algorithm works well
in parallel computing, in particular for applications in the area of image reconstruction via X-ray
tomography. Over the years, it was applied in different areas, for example: convex mathematical
programming, fast adaptation of radiation therapy planning, filtering in signal processing, solution
of “inverse problems”in medical physics.

References
[1] M. Benzi. Gianfranco Cimmino’s Contributions to Numerical Mathematics, Rend. Acc. Sc. Fis. Mat. Napoli, (4)

89 (2022), pp.73-98.
[2] G. Cimmino. An unusual way of solving linear systems, Atti Accad. Naz. Lincei. Math., Ser. VIII, LXXX, N.
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[3] M. Guida and C. Sbordone. The reflection method for the numerical solution of linear systems, SIAM REVIEW
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1.5 Cooperation of KeTCindyJS and Maxima
Masaki Suzuki

National Institute of Technology, Numazu College, Japan

This paper presents someHTML teachingmaterials created through the integration of KeTCindyJS
and Maxima. KeTCindyJS is suitable for mathematical visualization, but errors occur in the results
because the operations are numerical calculations. Therefore, the HTML teaching materials were
created by entrusting the computational processing to Maxima.
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1.6 Mathematical Experiments for Mathematics Majors

Michael Monagan
Simon Fraser University, Canada

At Simon Fraser University I teach a second year course entitled ”Computing with Calculus”.
The course is a required course for all mathematics majors and applied mathematics majors. The
prerequisites are an integral calculus course and a first programming course. The course covers
one variable calculus, a little bit of multivariate calculus (partial derivatives) and some modelling
with first order systems of differential equations. Students attend one lecture (one hour) and one
lab (one hour) per week for 12 weeks.

One goal of the course is to get mathematics majors to use a mathematical software package (I
use Maple) to perform a variety of calculations for calculus. Obviously, we want the students to be
able to calculate indefinite integrals and definite integrals, solve (systems) of algebraic equations,
and solve differential equations. We want them to be able to do these calculations both exactly,
and numerically.

A second goal is to teach the students to visualize everything they are doing. Maple and Math-
ematica have a wide range of graphics capabilities. From a simple plot of f(x) to plotting an implicit
surface f(x, y, z) = 0 to creating field plots for systems of differential equations.

The third goal is to teach the students how to do a “mathematical experiment”. The experiment
may be to disprove a conjecture, check a formula, find an optimum solution, or generate an ani-
mation of a mathematical object. Doing mathematical experiments usually requires programming,
hence the programming prerequisite. Indeed the course provides students a first opportunity to
practice their programming skills on mathematical problems instead of more computing problems.

In the talk I will share six mathematical experiments (one per assignment) that I’ve found to be
interesting and instructive for students. The first experiment is the prime number race (See [1]).
This can be done with a single for loop that loops through the primes and counts howmany primes
are congruent to 1 mod 4 and how many are congruent 3 mod 4. The experiment is to determine
which count win’s the race? The 1’s or the 3’s?

References

[1] Andrew Granville and Greg Martin. Prime Number Races. The American Mathematical Monthly 113(1):1–33,
2018.

1.7 Questions and ideas from deceased colleagues that help us
carry on

Michel Beaudin
École de technologie supérieure, Canada

Having been involved, over the past 30 years, in several conferences on the use of computer
algebra systems in mathematics education (notably, the TIME, USACAS, T3IC conferences and
the Education session of the ACA conferences), I have met several colleagues from whom I have
learned a lot. The recent unexpected deaths of some of them, within only 15 months of each other,
have upset many of us. An original way to honor their memory is to show how, starting from
their personal mathematical concerns – quite different – this can lead to an attempt to answer the
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following question: how, surrounded today by all this technology and artificial intelligence, can
we continue to teach mathematics to the current clientele of students? The examples presented
will be for some mathematics courses that engineering students must take.

1.8 Collaboration with ChatGPT for research and teaching in al-
gebraic combinatorics

Eli Bagno and Thierry (Noah) Dana Picard
Jerusalem College of Technology, Israel

As soon as a new technology is launched, the world of education checks its abilities and pos-
sible pedagogical usages. Since ChatGPT has been launched in 2023, researchers have analyzed
its affordances, and also compared them with other technologies [5]. Previously, we analyzed the
capabilities of ChatGPT as a teaching assistant in Linear Algebra, at senior High-School and un-
dergraduate levels [2] and [3]. Currently, we explore ChatGPT’s abilities as a research assistant,
this time in algebraic combinatorics. We report about our experience with using artificial intelli-
gence tools to conduct genuine mathematical research. We were surprised by the results, and the
collaboration with our research partners benefited greatly from integrating AI tools into our work.

Typically, computers are used to perform calculations that were once done by hand. This in-
volves programming, and the problem with programming is that, with every small change in the
properties you are studying, you have to change the code.

AI can solve that problem for you. You simply tell it what you want it to do — just like you
would do to a fellow mathematician, and it computes for you.

Sometimes, AI serves not only as a research assistant but also as an expert. We asked it to “read”
a central book in algebraic combinatorics and we asked it to explain to us a theorem presented in
the book, and we hardly understood it. After some fine tuning, the AI excelled in explaining to us
the context of the theorem and also created some helpful examples, which were not taken from the
text; see Fig. 1.1.

When you read a mathematical theorem in a book and try to understand it, you may come
across concepts you do not know or do not remember. If you have an expert in the field in your
vicinity, you can ask him for help. If you are alone, you will have no choice but to flip through the
book and find it. Then return to the place you were reading.

Here, the AI can be helpful. When requested to explain to us a notion that had already appeared
in the text, it gave us an excellent answer. Apparently, the bot read the book.

In our talk, we will describe the different sessions with the AI, the examples it provided, and
how this improved our AI literacy, making the usage of the new technology an integral part of the
newly acquired mathematical knowledge (see [1]). The OECD defined the 4 C’s of 21st Century
Education: Communication, Collaboration, Critical Thinking and Creativity (see Fig. 1.2).

Theymeant Communication, Collaboration between humans. In [8] and [10], communication is
extended to man-machine and machine-machine. Here we experienced new endeavors with man-
and-machine. Critical thinking applied for [3] and after, enabled us to develop an efficient dialog
with the bot. Communication with the bot is supposed to be in natural language; nevertheless
there are some rules to follow in order for it to be efficient and to avoid the strange/false answers
we experienced in the past, and still experience in some cases. We must mention that a 5th C has
to be added to the previous list, namely Curiosity, without which Creativity may be limited. This
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Figure 1.1: Examples ChatGPt

issue has been addressed briefly in [7] and [9] for plane algebraic geometry and related topics; it is
a must for the exploration of the new abilities offered by AI.

In a later step, we will discuss how to apply our explorations and discovery towards a didactic
transposition (in the spirit of [6]) and a useful work with students.
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1.9 Automated methods applied for the exploration of singular-
ities of some curves

Thierry Dana-Picard and Daniel Tsirkin
Jerusalem College of Technology, Israel

In memoriam Josef Böhm, a good friend dedicated to our community

We explore singularities of curves defined by geometric constructions using automated meth-
ods. A central feature of the work consists in networking between different kinds of software in
order to use their respective strengths (dynamic geometry, strong algebraic computations, etc.).
The activities have been proposed to in-service teachers learning towards an advanced degree.

1.10 Evaluation of the difficulty of a geometric statement: com-
paring ChatGPT and GeoGebra Discovery

Piedad Tolmos
Juan Carlos University, Spain

Our communication will present some initial results from an experience that we are developing,
comparing the “complexity” measure assigned by GeoGebra Discovery’s ShowProof command to
a variety of well-known, elementary geometric statements, and the performance (i.e. correctness,
clarity, and level of detail in the answer) of ChatGPT when asked about the same statements. Let
us recall that the ShowProof command algorithmically outputs a proof by contradiction of a given
geometric statement, expressing 1 as a combination of the hypotheses and the negation of the
thesis. And ranks the “interest” or “difficulty” of the statement by computing the highest degree
of the polynomials required to describe such contradiction. Measuring the interest of the output
of automated reasoning tools is a classical challenge, but we think that the rank computed by the
ShowProof command could be the first algorithmic approach towards establishing such measure
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in the context of geometric statements, although yet requiring a careful experimental work, such
as the one we are initiating now, regarding its practical performance..

1.11 Twomethods for proving “JapaneseTheorem II” usingMax-
ima and KeTCindy: An Application of the MNR Method

Setsuo Takato
KeTCindy Center, Japan

Many of the plane geometry problems that appear in Wasan (Japanese Mathematics) are beau-
tiful to look at but difficult to solve using computer algebra. In particular, triangular problems
involve simultaneous equations with irrational expressions, which are extremely difficult to solve
using normal methods. The author therefore devised a method to express the quantities of a tri-
angle using m = tan B

2
, n = tan C

2
and the radius of the inscribed circle r, which he named the

MNR method. The author developed the Maxima MNR library and confirmed that it can solve
various problems. It is possible to solve even more problems with techniques using quarter angles
M = tan B

4
,N = tan C

4
.

1.12 Creating Stand-AloneWorkspaces for Student Explorations
with Maple™

William C. Bauldry
Appalachian State University, USA

Wewill investigate creating stand-aloneworkspaces based on the pedagogic principle ofAction-
Consequence-Reflection (ACR) [3]. The interactive workbooks we design may be accessed and used
on the internet. Maple1 is themain software tool we use to build the student exploration documents.
We take advantage of the Maple Cloud for student web access.

Keywords: Action-Consequnce-Reflection Workspace, Stand-Alone Interactive Maple Docu-
ment, Web-Based Maple Document
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1.13 Utilization of Algebrite in KeTLTS
Yasuyuki Kubo

Yuge KOSEN, Japan

This paper reports on the integration of algebrite, an online computer algebra system (CAS),
into KeTLTS2, a system developed by S. Takato using KeTCindyJS. Through this integration, we
constructed a set of instructional materials that allow KeTLTS users to evaluate the validity of
their answers before submission.

2https://s-takato.github.io/ketcindyorg/indexj.html
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SPECIAL SESSION 2

Computer Algebra Software in the Life Sciences (CASinLife)

It is well-known that to answer a question, one must first state and formulate it properly. Many
questions, from the effect of a drug on cancer cells to the spread of an epidemic, require mathe-
matical modeling. Every project in the life sciences involves chemical materials, cells, or animals,
with the ultimate goal of understanding how changes in the quantity of one element affect the oth-
ers. While some questions can be addressed using basic methods, most require more sophisticated
techniques. For instance, when measuring all relevant quantities is impossible, one encounters the
issue of identifiability: is it possible to estimate the model’s parameters using data from only the
observable variables?

Computer Algebra, as the name suggests, is the field focused on developing algorithms for
symbolic computations involving variables and parameters. While life scientists have a wealth of
mathematically interesting questions, computer algebra researchers possess a wealth of algorithms
and methods capable of addressing complex problems. Our session aims to bring these two groups
together and facilitate the matching of questions with solutions. In addition to speakers from pre-
vious editions of CASinLife, who will report on collaborations sparked earlier, we are also seeking
new participants with fresh challenges and ideas to join our ongoing journey of discovery.

Thiswill be the fourth edition of CASinLife. The first three editions were held as special sessions
of ACA 2022 (in Turkey), ACA 2023 (in Poland), and ICMS 2024 (in the UK). Topics of interests
include, but are not limited to the following:

• Mathematical modelling for biological/chemical/ecological questions
• Chemical reaction network theory
• Combinatorial optimizations and machine learning tools for mathematical biology
• Cylindrical algebraic decomposition
• Quantifier elimination theory
• Computer algebra packages for real algebraic geometry
• Parameter identifiability analysis -Phylogenetics

Session organizers

• AmirHosein Sadghimanesh (Coventry University, UK)
• Andrzej Mizera (University of Warsaw, Poland)

15



COMPUTER ALGEBRA SOFTWARE IN THE LIFE SCIENCES

2.1 Graph Neural Network-Based Reinforcement Learning for
Controlling Biological Networks - the GATTACA framework

Andrzej Mizera
University of Warsaw and IDEAS Research Institute, Poland

Cellular reprogramming, the artificial transformation of one cell type into another, has been
attracting increasing research attention due to its therapeutic potential for complex diseases. How-
ever, identifying effective reprogramming strategies through traditional wet-lab experiments is
time-consuming and costly.

In this talk, we explore the use of deep reinforcement learning (DRL) to control Boolean network
models of complex biological systems, such as gene regulatory and signalling pathway networks.
We introduce the Graph-based Attractor-Target Control Algorithm (GATTACA), a framework de-
signed to solve a novel, general target-control problem for BNmodels of biological networks under
the asynchronous update mode, specifically in the context of cellular reprogramming. To facilitate
scalability of GATTACA, we consider our previously introduced concept of a pseudo-attractor and
we improve our procedure for effective identification of pseudo-attractor states. Then, we incor-
porate graph neural networks with graph convolution operations into the artificial neural network
approximator of the DRL agent’s action-value function to leverage the available knowledge on the
structure of a biological system and to indirectly, yet effectively, encode the system’s modelled
dynamics into a latent representation.

Experiments on a number of large-scale, real-world biological networks from literature demon-
strate the effectiveness and scalability of our approach.

2.2 Biological functions and functionalmodules originated in the
structure of chemical reaction network

Atsushi Mochizuki
Institute for Life and Medical Sciences, Kyoto University, Japan

In living cells, chemical reactions are connected by sharing their products and substrates, and
form a complex network system. Biological functions arise from the dynamics of chemical re-
action networks, and are controlled by changes in the amount/activity of enzymes that catalyze
reactions in the system. In this talk, I will introduce our recent theoretical approach to deter-
mine the behaviors of chemical reaction systems based solely on network topology. (1) We found
that the qualitative response of chemical concentrations (and reaction fluxes) to changes in en-
zyme amount/activity can be determined from the network structure alone. (2) Non-zero re-
sponses are localized to finite ranges in a network, and each range is determined by a subnet-
work called a “buffering structure”. The buffering structure is defined by the following equa-
tion from local topology of a network χ : = −(# of chemicals) +(# of reactions) −(# of cycles)
+(# of conserved quantities) = 0 where the index χ is analogous to the Euler characteristic. We
proved that any perturbation of a reaction parameter inside a buffering structure only affects the
concentrations and fluxes inside the buffering structure, and does not affect the concentrations
nor fluxes outside. Finally, (3) buffering structures govern the bifurcation of the steady state of a
reaction network. The bifurcation behaviors are localized to finite regions within a network, and
these regions are again determined by buffering structures. These results imply that the buffering
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structures are the origin of the modularity of biological functions derived from reaction networks.
We applied this method to the cell cycle system and demonstrated that the control of different
checkpoints is achieved by buffering structures.

2.3 Analyzing the dynamics and structure of biochemical reac-
tion networks via network decomposition

Bryan Hernandez
University of the Philippines Diliman, Philippines

The complexity of biochemical reaction networks, characterized by their intricate structures
and dynamic behaviors, presents considerable challenges in their analysis. To address these chal-
lenges, we apply network decomposition techniques to study the structural and dynamical prop-
erties of biochemical networks. In this approach, we decompose the network into independent
subnetworks, where the stoichiometric matrices of the subnetworks can be directly summed to
match the stoichiometric matrix of the entire network. This technique facilitates the computa-
tion of positive steady states, aiding in the description of long-term network behavior. We also
observe a widespread property across many networks involving incidence-independent decompo-
sition, where the incidencematrices of subnetworks can be directly summed tomatch the incidence
matrix of the entire network. A key discovery is the phenomenon we term Finest Decomposition
Coarsening (FDC), in which the finest independent decomposition (FID) is a coarsening of the
finest incidence-independent decomposition (FIID). We characterize this property and find con-
ditions under which these two types of decomposition coincide. Furthermore, we establish con-
nections between these decompositions and the connected components of the network, known as
linkage classes. This study provides a deeper understanding of the algebraic structure underlying
biochemical reaction networks, advancing our ability to model and analyze their behavior.

2.4 Bayesian inference of interaction rates in a metabolite-bac-
teria network using time-series counts

Jack Jansma1, Pietro Landi1 and Cang Hui1,2
1 Stellenbosch University, South Africa

2 African Institute for Mathematical Sciences, South Africa

The human gut hosts a vast and diverse set of microbes that indirectly interact with each other
through consuming and producing compounds, called metabolites. Disruptions in this network
between gut microbes and their human host can contribute to the onset and progression of various
disorders, including obesity, inflammatory bowel syndrome and Parkinson’s disease. Understand-
ing the intricate and dynamic interactions between microbes, metabolites and the host is essential
for developing microbiota-targeted interventions to improve human health. To this end a precise
mathematical framework is crucial to capturing the complex dynamics of the system.

Here, we develop a dynamic network model of coupled ordinary differential equations and
present a computational workflow that integrates computer algebra with Bayesian inference for
model identification. Our approach infers interaction rates—quantifying metabolite consumption
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and production—from experimental time-series count data within a Bayesian framework, incorpo-
rating prior knowledge and uncertainty quantification. This workflow enables in silico predictions
of system behaviour under perturbations and offers a robust method to integrate high-dimensional
biological data with mechanistic models. By refining our understanding of gut microbial dynamics,
this framework facilitates the assessment of microbiota-targeted therapeutic interventions.

Keywords: Gut microbiota, Bayesian inference, Ordinary differential equations

2.5 Reaction networks with (generalized) mass-action kinetics:
Sign vector conditions for the existence of a unique general
equilibrium

Marcus Aichmayr1, Abhishek Deshpande2, Stefan Müller3 and Georg Regensburger1
1 University of Kassel, Germany

2 IIIT Hyderabad, India
3 University of Vienna, Austria

We provide sufficient conditions for the existence of a unique equilibrium (in every compati-
bility class and for all rate constants), based on recent findings in [2]. Notably, our results apply
to general equilibria, thereby extending previous results for special (toric or complex-balanced)
equilibria, see e.g. [3]. Moreover, we consider both mass-action and generalized mass-action
kinetics. We illustrate our methods by examples, using our SageMath package [1] available at
https://github.com/MarcusAichmayr/sign_vector_conditions.
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2.6 Symbolic bifurcation analysis of reaction networks with Py-
thon. Part I: Theory

Nicola Vassena
University of Leipzig, Germany

Computer algebra methods for analyzing reaction networks often rely on the assumption of
mass-action kinetics, which transform the governing ODEs into polynomial systems amenable to
techniques such as Gröbner basis computation and related algebraic tools. However, these methods
face significant computational complexity, limiting their applicability to relatively small networks
involving only a handful of species.

In contrast, building on recent theoretical advances, we present a symbolic approach designed
to detect bifurcations in larger reaction networks (up to a few dozen species) equipped with a broad
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class of “parameter-rich” kinetics. This class includes enzymatic kinetics such asMichaelis-Menten,
ligand-binding kinetics like Hill functions, and generalized mass-action kinetics.

For a given network, the algorithm identifies all minimal autocatalytic subnetworks and fully
characterizes the presence of bifurcations associated with zero eigenvalues, thus determining whe-
ther the network admits multistationarity. It also effectively detects oscillatory bifurcations arising
from positive-feedback structures, capturing a significant class of possible oscillations.

The first talk (Vassena) will cover the theoretical foundations of this method, while the second
(Golnik) will address its implementation in Python.

2.7 Graph-Theoretic Algorithms for ReducingChemical Reaction
Networks

Ovidiu Radulescu
University of Montpellier, France

Chemical reaction networks (CRNs) serve as models for complex biochemical processes occur-
ring in cells and tissues. Studying these models is essential for understanding diseases, developing
new therapies, controlling bioengineering processes, and gaining insights into fundamental as-
pects of living systems. However, many existing CRN models involve a large number of species
and reactions, placing them beyond the reach of formal analysis methods. Additionally, parameter
optimization for such models suffers from the curse of dimensionality. In previous work, we de-
veloped model reduction techniques that transform complex CRNs into simpler ones, with fewer
species and reactions, making themmore amenable to analysis and optimization. These approaches
were based on tropical scaling and geometric singular perturbation theory. More recently, we in-
troduced a graph-theoretical model reduction method based on the graph Laplacian. This method
transforms CRNs algorithmically using graph rewriting on the species-reaction graph. In this pre-
sentation, I will show how model reduction via singular perturbations can also be formulated as
a graph rewriting process and describe a general implementation of such algorithms. I will also
discuss the application of these tools for generating hierarchies of models, where each model is
derived from a more complex one through reduction. Such hierarchies can be used in AutoML
strategies to select an appropriate model based on the available data and to use optimization re-
sults from simpler models to constrain and inform the optimization of more complex models as
richer datasets become available.

2.8 Symbolic bifurcation analysis of reaction networks with Py-
thon. Part II: Implementation

Richard Goldnik
University of Leipzig, Germany

Computer algebra methods for analyzing reaction networks often rely on the assumption of
mass-action kinetics, which transform the governing ODEs into polynomial systems amenable to
techniques such as Gröbner basis computation and related algebraic tools. However, these methods
face significant computational complexity, limiting their applicability to relatively small networks
involving only a handful of species.
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In contrast, building on recent theoretical advances, we present a symbolic approach designed
to detect bifurcations in larger reaction networks (up to a few dozen species) equipped with a broad
class of “parameter-rich” kinetics. This class includes enzymatic kinetics such asMichaelis-Menten,
ligand-binding kinetics like Hill functions, and generalized mass-action kinetics.

For a given network, the algorithm identifies all minimal autocatalytic subnetworks and fully
characterizes the presence of bifurcations associated with zero eigenvalues, thus determining whe-
ther the network admits multistationarity. It also effectively detects oscillatory bifurcations arising
from positive-feedback structures, capturing a significant class of possible oscillations.

The first talk (Vassena) will cover the theoretical foundations of this method, while the second
(Golnik) will address its implementation in Python.

2.9 New Results about Bricard’s Flexible Octahedra

Robert H. Lewis1, Mosavverul Hassan2 and Evangelos Coutsias3
1 Fordham University, NY, USA
2 Vanderbilt University, TN, USA

3 Stony Brook University, NY, USA

Biological functions such as signal transduction, enzymatic turnover, and allosteric regulation
emerge as a consequence of protein conformational transitions (protein dynamics) across a complex
energy landscape. Illuminating themechanistic basis of protein function requires an understanding
of why structures such as molecules can become flexible.

A polypeptide backbone can be modeled as a polygonal line whose edges and angles are fixed
while some of the dihedral angles formed by successive triplets of edges vary freely, so that the
structure is flexible. Wemodel and analyze such a structure with a system of polynomial equations.

This subject has a long history.

• In 1812, Cauchy considered flexibility of three dimensional polyhedra (edges and faces),
where each joint can pivot or hinge. He proved [2] that if the polyhedron is convex it must
be rigid – i.e. cannot be flexible.

• In 1896 Bricard [1], following Cauchy, found three types of flexible non-convex octahedra,
but the faces intercross, at least in 3-space.

• Following Bricard’s ideas, Connelly (1978) found non-convex genuine flexible polyhedra [3]
that really live in 3-space.

In spite of that success, key questions remained. Bricard asserted that a certain planar configuration
of quadrilaterals can be flexible in the same way as the octahedra, since both systems satisfy the
same set of polynomial equations:
A1t2u2 + B1t2 + C1tu+ D1u2 + E1,
A2u2v2 + B2u2 + C2uv+ D2v2 + E2,
A3v2t2 + B3v2 + C3vt+ D3t2 + E3

Here the variables t, u, v represent angles and the coefficients are polynomials in the edges. The
geometric structure is flexible if this system of polynomial equations has infinitely many solutions.
In 2016 [4] we used computer algebra to show that the quadrilaterals have additional modes for
flexibility. We did that by analyzing the Dixon resultant [5] of the system.
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Another statement fromBricard [1], which has been called the Bricard conjecture, has remained
unjustified until now:
Conjecture: The system of three equations above has infinitely many solutions iff t, u, and v satisfy
both of these equations:
a1t+ b1u+ c1v+ d1tuv = 0,
a2tu+ b2tv+ c2uv+ d2 = 0,
where the coefficients are polynomials in the edges. The “if” part here is easy, a simple exercise.
The converse has never been proven.
Main Result: The converse is true for every known case of flexible structures. That includes the
three types of flexible octahedra and every known case of the flexible planar quadrilaterals. The
proof is with computer algebra, normalizing the 8×8Dixon resultant, which contains polynomials
in twelve variables with up to 100000 terms.
Secondary Result: As a biproduct of the main result, we have produced animations of Bricard’s type
three flexible octahedron. Apparently this has never been done before.

Keywords: flexible structures, octahedron, computer algebra
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2.10 Learning treatment effects from multiple data
Sofia Triantafillou

University of Crete, Greece

Much of intelligence behaviour involves causal reasoning by predicting the effects of interven-
tions. Causal inferences require experimental data, collected specifically for the estimation of a
specific treatment effect. Such data however are expensive, difficult to collect and therefore scarce.
Recent advances in data collection and sharing capacity have made vast amounts of observational
data, such as electronic health record data, available to researchers. However, observational data
are not necessarily appropriate for causal inference. Combining observational and experimental
data can greatly improve causal predictions. In this talk, we discuss how causal models offer a
language that connects different types of data and allows generalizing inferences across domains
and populations.

2.11 UsingML tools to predict number of solutions of parametric
system of polynomial equations with the help of CRNs

AmirHosein Sadeghimanesh
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Coventry University, UK

Many questions in Chemical Reaction Network (CRN) theory can be framed as classifica- tion
problems, such as the detection of multistationarity. In the age of AI, it is a common knowledge
that there are plenty of machine learning (ML) algorithms capable of doing classi- fication tasks.
These two sentences just made a clear motivation for using ML tools in CRN theory, and recently,
in a work by the speaker and his colleagues, the first step in this direction has been taken. They
introduced a new representation for CRN objects that helps us feed a CRN as an input to advanced
ML algorithms. Multistationarity of a network mathemati- cally is the study of number of (posi-
tive) real solutions to a parametric system of polynomial equations describing the steady states of
the network. This success together with Hungarian Lemma that states any given parametric poly-
nomial system satisfying a technical condition can be associated to steady states of a CRN, triggers
yet another idea. It is known that the deterministic symbolic algorithms to study the number of
real solutions of parametric system of polynomial equations such as cylindrical algebraic decompo-
sition are doubly exponential and so not practical for large size systems. Thus, we propose to use a
new approach, convert- ing the system of equations to a CRN and then using the newly developed
ML tools to predict the number of real solutions of the system.
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SPECIAL SESSION 3

Computer algebra in group theory and representation theory

Groups are among the most fundamental objects of study in algebra. They appear naturally in
the study of symmetries, but their nature is quite abstract. Representation theory allows us to
study such abstract structures with the use of tools from linear algebra. For the study of concrete
examples, computer algebra is extremely useful andmany computer packages have been developed
for this reason (including, but not limited to, GAP, Magma, Maple, SageMath). Moreover, there are
families of finite groups, such as the sporadic simple groups or the exceptional complex reflection
groups, for which most theoretical results have computational proofs. Finally, there are many
discussions nowadays about the possibility of obtaining proofs to major open conjectures, as well
as new theorems, with the use of computers. The session “Computer algebra in group theory and
representation theory” will aim to cover all the topics mentioned above, with talks from researchers
in group or representation theory who use or develop computer algebra tools.

Session organizers

• Maria Chlouveraki (National and Kapodistrian University of Athens, Greece)
• Ilias Andreou (National and Kapodistrian University of Athens, Greece)
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3.1 The representations of the Brauer-Chen algebra associated to
the exceptional complex reflection groups

Ilias Andreou
National and Kapodistrian University of Athens, Greece

In 1937, Richard Brauer extended Schur–Weyl duality to the case of the orthogonal group of
transformations of a complex vector space by introducing its corresponding dual algebra, a natural
extension of the group algebra of the symmetric group. Since then, the Brauer algebra has found
connections outside the context of Schur–Weyl duality and has widely been generalized to larger
classes of complex reflection groups. In this talk we study the generalization by Chen for all com-
plex reflection groups and describe how we used GAP programming to obtain explicit results for
the cases of exceptional complex reflection groups.

3.2 Coxeter groups via Cartan matrices

Maria Chatzikyriakou
National and Kapodistrian University of Athens, Greece

In this talk, based on my master thesis, we will see how we can study Coxeter groups with the
use of Cartan matrices. Cartan matrices constitute a family of matrices with specific properties.
We will discuss Matsumoto’s theorem, as well as the cancellation law, both very important for
Coxeter groups. Moreover, we will present the classification of finite Coxeter groups with the use
of Dynkin diagrams. We will define root systems and use them to describe the generators of a
Coxeter group. Finally, we will look at the longest element and its properties.

3.3 Blocks and Schur elements for Hecke algebras of exceptional
complex reflection groups

Maria Chlouveraki
National and Kapodistrian University of Athens, Greece

Complex reflection groups are finite groups generated by (pseudo)reflections. They are prod-
ucts of irreducible complex reflection groups, which can either belong to the infinite seriesG(de, e, n)
or to the 34 exceptional groups G4,G5, . . . ,G37. Most results obtained with the use of algebraic
combinatorics for the former are obtained with the use of computer algebra for the latter. In this
talk, wewill give an overview of our results on themodular representation theory of Hecke algebras
associated with exceptional complex reflections obtained computationally: from the description of
blocks and Schur elements to the verification of old and new conjectures.

3.4 Decomposition of affine crystals in levels 1 and 2

Benedek Dombos
Université de Genève, Switzerland
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Affine crystals in type A can be regarded as infinite ranked posets whose rankgenerating func-
tions are classical infinite products (e.g. the Rogers–Ramanujan products appear in rank 1, level 3).
I will describe two purely combinatorial decompositions of these crystals, yielding new infinite-
sum formulas at levels 1 and 2, where the major index statistic naturally emerges. This is joint
work with Jihyeug Jang.

3.5 The exotic nilCoxeter algebra for G(m,m, 3)

Daniel Juteau
Université de Picardie Jules Verne, France

Ben Elias introduced a q-deformation of the Cartan matrix of affine type An−1, which plays a
role in the quantum geometric Satake equivalence. When q is specialized to a 2m-th root of unity,
the reflection representation factors through the complex reflection group G(m,m, n). I will report
on joint work with Ben Elias and Ben Young about the corresponding exotic nilCoxeter algebra,
which is generated by q-deformed divided difference operators; this new algebra has surprising
features. A classic result of Demazure, for Weyl groups, states that the polynomial ring of the
reflection representation is a Frobenius extension over its subring of invariant polynomials, and
describes how the Frobenius trace can be constructed within the nilCoxeter algebra. We study the
analogous Frobenius extension for G(m,m, n), and identify the Frobenius trace within the exotic
nilCoxeter algebra for G(m,m, 3).

3.6 Matroids

Angeliki Metallinou
National and Kapodistrian University of Athens, Greece

This talk offers a brief introduction to the theory of matroids, a combinatorial framework that
generalizes the notion of linear independence beyond vector spaces. We will explore key defini-
tions, fundamental examples, and important properties that make matroids a unifying structure
across algebra, graph theory, and optimization. Special emphasis will be placed on the repre-
sentability of matroids. The presentation is based on a master’s thesis.

3.7 Steadied quotients of KLR algebras

Dinushi Munasinghe
National and Kapodistrian University of Athens, Greece

We give a brief overview of KLR algebras as diagrammatic presentations of blocks of cyclotomic
quotients of Hecke algebras via Brundan and Kleshchev, and then discuss steadied quotients, a gen-
eralization of cyclotomic quotients introduced byWebsterwhichwe have recently shown to be low-
dimensional representatives of Morita equivalence classes of Ariki–Koike blocks, as established by
Scopes, Chuang–Kessar, Chuang–Rouquier, Evseev–Kleshchev, Webster, and others.
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3.8 Reflection Groups in the Light of Formal Concept Analysis

Götz Pfeiffer
University of Galway, Ireland

Formal Concept Analysis (FCA) is a branch of applied lattice theory, concerned with the study
of concept hierarchies derived from collections of objects and their attributes. Introduced by R.
Wille in the 1980s, FCA now has found applications in machine learning and related fields. An
application of FCA to hyperplane arrangements yields a new Galois connection on the (conjugacy
classes of) parabolic subgroups of a finite reflection group. Combined with methods from Serre’s
recent work on involution centralizers, we obtain a refinement of Howlett’s description of the
normalizers of parabolic subgroups of a finite Coxeter group. This is joint work with G. Roehrle
and J.M. Douglass.

3.9 The generalized Springer correspondence for disconnected
reductive groups

Kostas Psaromiligkos
Université Clermont Auvergne, France

The generalized Springer correspondence provides a canonical partition of simpleG-equivariant
perverse sheaves on the nilpotent cone of a reductive group G into disjoint subsets known as in-
duction series. Each series corresponds bijectively to the set of irreducible representations of a
Weyl group. In this talk, I will discuss how to extend the correspondence to the setting where G is
a disconnected complex reductive group and representations/sheaves over a field of arbitrary char-
acteristic. I’ll also present illustrative examples and computations, with the help of the CHEVIE
package for organizing the relevant data. This is joint work with Simon Riche.

3.10 Toric ideals of graphsminimally generated by a Gröbner ba-
sis

Christos Tatakis
University of Western Macedonia, Greece

The problem of describing families of ideals minimally generated by either one or all of its
Gröbner bases is a central topic in commutative algebra. This work tackles this problem in the
context of toric ideals of graphs. We call a graph G an MG-graph if its toric ideal IG is minimally
generated by a Gröbner basis, while we say that G is an UMG-graph if every reduced Gröbner basis
of IG is a minimal generating set.

We prove that G is an UMG-graph if and only if IG is a generalized robust ideal, i.e., ideal whose
universal Gröbner basis and universal Markov basis coincide. We observe that the class of MG-
graphs is not closed under taking subgraphs, and we prove that it is hereditary (i.e., closed under
taking induced subgraphs). Also, we describe two families of bipartite MG-graphs: ring graphs
and graphs whose induced cycles have the same length. The latter extends a result of Ohsugi and
Hibi, which corresponds to graphs whose induced cycles have all length 4.
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While working on this project, we have been making intensive and constant use of the software
SageMath to generate examples and support conjectures. We also used the software SageMath for
computing the whole Gröbner fan of the corresponding toric ideal, and thus we can only handle
small examples in a reasonable amount of time. We have used the above computations together
with the Nauty library to check that the only bipartite graph with ≤ 8 vertices that is not an
MG-graph is the cube graph (the 1-skeleton of the 3-dimensional cube).

This is joint work with Ignacio García-Marco and Irene Márquez-Corbella.
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SPECIAL SESSION 4

Computational Differential and Difference Algebra and Their
Applications

Objectives

Algebraic differential and difference equations and systems of such equations arise inmany areas of
mathematics and in a wide range of subject areas including physics, biology, chemistry, economics,
and engineering. Differential and difference computer algebra concerns the study of systems of
differential and difference equations in a constructive way that extends methods and algorithms
of commutative algebra and algebraic geometry. The main goal of the session is to discuss recent
developments in computational methods of differential and difference algebra, as well as to explore
new ideas and approaches oriented toward various applications of these methods.

Topics of the session include, but are not limited to

• Systems of Differential, Difference and Difference-Differential Algebraic Equations
• Differential and Difference Gröbner (Standard) and Involutive Bases
• Differential and Difference Characteristic Sets
• Triangular Decompositions of Differential and Difference Systems
• Differential and Difference Elimination
• Algorithmic Generation of Finite Difference Approximations to PDEs
• Consistency and Stability Analysis of Finite Difference Approximations
• Dimension Characteristics of Differential and Difference Algebraic Structures
• Difference Equations over Finite Fields and Their Applications
• Software Packages for Differential and Difference Algebra
• Applications of Differential and Difference Algebra in the Sciences

Session organizers

• Roberto La Scala (University of Bari Aldo Moro, Italy)
• Alexander Levin (The Catholic University of America, USA)
• Daniel Robertz (RWTH Aachen University, Germany)
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4.1 Gröbner-type Bases with Respect to the Effective Order and
Bivariate Dimension Polynomials of Difference Modules

Alexander Levin and Joseph Baranoski
The Catholic University of America, Washington, DC, USA

We introduce Gröbner-type bases in free difference modules that are associated with a reduc-
tion respecting the effective order of module elements. We prove some properties of such bases
and present a Buchberger-type algorithm for their computation. The obtained results allows us to
give a method of computation of a bivariate dimension polynomial of a finitely generated differ-
ence module. (The existence theorem for such a dimension polynomial was proved in [1], but that
paper does not give a method of its computation.) We consider invariants of the bivariate differ-
ence dimension polynomials and show how they can be applied to the isomorphism problem for
difference modules and to the equivalence problem for systems of algebraic difference equations.
We also present a generalization of the results on multivariate difference dimension polynomials
obtained in [2].
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4.2 Integrability and Linearizability of a Family of Three-Dime-
nsional Polynomial Systems

Bo Huang1, Ivan Mastev2 and Valery Romanovski2
1 Beihang University, China

2 University of Maribor, Slovenia

We investigate the local integrability and linearizability of a family of three-dimensional poly-
nomial systems with the matrix of the linear approximation having the eigenvalues 1, ζ , ζ 2, where
ζ is a primitive cubic root of unity. We establish a criterion for the convergence of the Poincaré–
Dulac normal form of the systems and examine the relationship between the normal form and
integrability. Additionally, we introduce an efficient algorithm to determine the necessary condi-
tions for the integrability of the systems. This algorithm is then applied to a quadratic subfamily
of the systems to analyze its integrability and linearizability. Our findings offer insights into the
integrability properties of three-dimensional polynomial systems.
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4.3 Subresultants of Several Ore Polynomials
Jiaqi Meng and Jing Yang

Guangxi Minzu University, China

Subresultant theory is a fundamental tool in computer algebra and algebraic geometry, and its
extension to several commutative polynomials has been a significant development in recent years.
In this paper, we generalize the theory of subresultants to the setting of several Ore polynomials.
Our contributions are as follows:

1. We introduce a novel definition of subresultants for several Ore polynomials, expressed ex-
plicitly in terms of their coefficients.

2. We demonstrate the utility of this definition by employing it to compute the parametric
greatest common right divisor (GCRD) of several Ore polynomials.

3. We provide three equivalent expressions of the proposed definition, which are formulated in
terms of the solutions of Ore polynomials.
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4.4 Iterated strongly normal extensions and nonlinear differen-
tial equations

V. Ravi Srinivasan and Partha Kumbhakar
IISER Mohali, India

In this talk, I will sketch various results describing the structure of differential subfields of
iterated strongly normal extensions. These results will then be used to study differential algebraic
dependence of generic solutions in iterated strongly normal extensions of nonlinear differential
equations. Our results along with the work [1], immediately proves that the Lotka-Volterra system{

y′1 = αy1 + βy1y2
y′2 = γy2 + δy1y2

where α , β , γ , δ ∈ C \ 0, has a generic solution in an iterated strongly normal extension E of C
if and only if α = γ , which in turn holds if and only if the generic solution is in an elementary
extension ofC and that the Poizat differential equation y′′ = y′f(y),where f ∈ C(y), has no generic
solution in an iterated strongly normal extension of C.
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4.5 Stream cipher over Finite Fields: A Difference Algebra Ap-
proach

Roberto La Scala
Università degli Studi di Bari, Italy

Many stream ciphers of real practical interest, such as Trivium and Bluetooth’s E0, can be mod-
eled as systems of difference equations with coefficients and solutions in a finite field. Alongside
this system of equations, one also needs a polynomial that enables the calculation of the keystream
elements from the cipher register. This register can indeed be considered the state whose evolution
is governed by the system of explicit ordinary difference equations. Such a system ensures that
each state is uniquely determined by the initial state, which effectively serves as the cipher’s key.
We will refer to this class of stream ciphers as “difference ciphers”.

Using the formalism of Difference Algebra, it is possible to define some relevant properties of
stream ciphers, in particular their invertibility and periodicity. These properties are introduced in
terms of fundamental functions associated with the difference system, such as the “state transi-
tion endomorphism” and its corresponding “state transition map”. Additionally, it is possible to
precisely define an algebraic attack on the cipher based on the knowledge of a certain number of
keystream elements. The property of a cipher being invertible also allows for the optimization of
such an attack, which can drastically reduce the security of the cryptosystem. Indeed, assuming in-
vertibility, it is sufficient to calculate any internal state, such as the one from which the keystream
begins, to know the initial state that contains the key. To determine if a difference cipher is invert-
ible, one can use the calculation of a Gröbner basis of an ideal associated with the state transition
endomorphism. This computation also yields the inverse difference system, enabling the reversal
of the cipher’s clock progression.

Another critical property for the security of such stream ciphers is the non-linearity of the
difference equations and/or the keystream polynomial. Indeed, it is well known that a system
of LFSRs, which corresponds to the fully linear case, can be attacked in polynomial time. In the
presence of non-linear equations in the system, however, an algebraic attack corresponds to solving
a system of non-linear polynomial equations over a finite field, the resolution of which is generally
an NP-complete problem. Using the notion of difference cipher, we can analyze the various systems
of polynomial equations corresponding to different types of algebraic attacks and understand why
they are complex to solve.

Finally, to illustrate these concepts and the corresponding cryptanalytic techniques, we con-
sider the stream ciphers Trivium and E0. These ciphers have been the subject of recent attacks in
[1], [2], [3].
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4.6 A Reduce package for Differential Operators inMathematical
Physics and Theoretical Physics

Raffaele Vitolo
University of Salento, Italy

The mathematical subject ‘Geometry of Differential Equations’, although not mainstream, cov-
ers many topics which have significant overlap with several other branches of Mathematics, like
symmetries and conservation laws of ODEs and PDEs, Hamiltonian or symplectic formalism for
ODEs and PDEs, integrability. See the books [1] and [5] for an overview. The CDE package was
developed in Reduce with the purpose of providing a tool for computations in the above field [4].
This package has already been used in a number of papers (e.g. [2], [3] and [6] to [8]).

Recent developments of the capabilities of CDE go in the direction of computing with differ-
ential operators. We will show how newly added software can be used for typical computations
related with the search of Lax pairs (joint work with R. La Scala, Un. of Bari, Italy), or can pro-
vide an environment for calculations in Supersymmetric Quantum Mechanics (joint work with L.
Miranda and F. Toppan CBPF – Rio De Janeiro, Brazil).
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4.7 Symbolic integration on a planar differential foliation

Thierry Combot
University of Bourgogne, France

In this presentation, we will study the differential algebraic properties of integrals of the form∫
G(x, y(x, h))dx where y is a family of solutions of differential equations.

33

https://doi.org/10.1016/j.cpc.2022.108284
https://doi.org/10.1016/j.cpc.2022.108284
https://arxiv.org/abs/2101.06467
10.1111/sapm.12302
https://arxiv.org/abs/1903.08204
https://arxiv.org/abs/1903.08204
http://gdeq.org/Symbolic_Book
https://doi.org/10.1098/rspa.2024.0249
https://arxiv.org/abs/2407.17189
https://arxiv.org/abs/2407.17189
https://arxiv.org/abs/2104.13206
https://github.com/Jakub-Vasicek/WDVV-computations
https://github.com/Jakub-Vasicek/WDVV-computations
https://arxiv.org/abs/1808.03902
https://arxiv.org/abs/1808.03902


COMPUTATIONAL DIFFERENTIAL AND DIFFERENCE ALGEBRA AND THEIR APPLICATIONS

Consider a differential equation y′ = F(x, y) with F rational. This equation defines a foliation
of the plane F , and we consider the integral

∫
F G(x, y(x))dx along the leaves of F , with G ratio-

nal. Alternatively, we can write I(x, h) =
∫

G(x, y(x, h))dx where y(x, h) is a family of solutions
of y′ = F(x, y). if F is an algebraic foliation, such integral is D-finite and is always differen-
tially algebraic in h. Oppositely, let us assume that y′ = F(x, y) has no rational first integral. We
will prove that if I(x, h) is differentially algebraic, then, up to parametrization change in h, I(x, h)
satisfies a differential equation of the form LI = (∂y(x, h))ℓH(x, y(x, h)) where L ∈ C[∂h] has con-
stant coefficients. The possible operators L depends on the existence of an integrating factor for
y′ = F(x, y) and its algebraic nature. We will present an efficient algorithm to find such minimal
integrating factor. We will then present an algorithm to find a differential relation up to some
given bound on the order of L and degree of H. In the particular case of the foliations y = ln x+ h
et ln y = α ln x + h, we have a complete algorithm to decide if integrals are differential algebraic,
and this leads to explicit formulas in terms of special functions Ei, Li,Φ. This allows to study the
differential transcendence of the flow of a differential equation in the plane. If possible, we will
present how this generalizes in higher dimension.

References
[1] Thierry Combot. Symbolic integration on a planar differential foliation, 21 Jun 2023. https://arxiv.org/

abs/2306.12573.

4.8 Affirmative answer to theQuestion of Leroy and Matczuk on
injectivity of endomorphisms of semiprime left Noetherian
rings with large images

V. V. Bavula
University of Sheffield, UK

The class of semiprime left Goldie rings is a huge class of rings that contains many large sub-
classes of rings – semiprime left Noetherian rings, semiprime rings with Krull dimension, rings of
differential operators on affine algebraic varieties and universal enveloping algebras of finite di-
mensional Lie algebras to name a few. In 2013, the paper, ‘Ring endomorphisms with large images,’
Glasg. Math. J. 55 (2013), no. 2, 381–390, A. Leroy and J. Matczuk posed the following question
[1]:

If a ring endomorphism of a semiprime left Noetherian ring has a large image, must it be injective?
The aim of the paper is to give an affirmative answer to the Question of Leroy and Matczuk

and to prove the following more general results.

Theorem. (Dichotomy) Each endomorphism of a semiprime left Goldie ring with large image is
either a monomorphism or otherwise its kernel contains a regular element of the ring (⇔ its kernel is
an essential left ideal of the ring). In general, both cases are non-empty.

Theorem. Every endomorphism with large image of a semiprime ring with Krull dimension is a
monomorphism.

Theorem. (Affirmative answer to the Question of Leroy and Matczuk) Every endomorphism
with large image of a semiprime left Noetherian ring is a monomorphism.
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SPECIAL SESSION 5

Computer algebra modeling in physics, classical and celestial
mechanics, and engineering

The progressive impact of Computer Algebra Systems (CAS) in science-based disciplines is vividly
noticeable. It is rare to encounter a scientific investigation immune from its beneficial influences.
Within 30 years, the CAS has become an efficient tool for analyzing engineering and mathematical
challenges. Symbolic capabilities of the CAS provide a forum to perform amazing calculations that
practically are impossible otherwise. For instance, dynamic simulations of engineering issues are
addressed, and mathematical conjectures are formulated and verified. Many problems in physics
and mechanics are tackled by applying the perturbation theory, which implies that quite cumber-
some symbolic calculations can be solved efficiently with the CAS.

The purpose of organizing this session is to bring together enthusiastic users of Computer
Algebra Systems in science and engineering. Expected topics of presentations include (but are not
limited to):

• symbolic and numerical methods for solving ODEs
• modeling and simulation in physics and engineering
• applications in classical and celestial mechanics
• perturbation theories

Session organizers

• Alexander Prokopenya (Institute of Information Technology, Warsaw University of Life Sci-
ences – SGGW, Poland)

• Haiduke Sarafian (Professor Emeritus of Physics and John T. and Paige S. Smith Professor of
Science Emeritus, The Pennsylvania State University, USA)
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5.1 An Attempt to Create Teaching Materials for the Brachis-
tochrone Curve Using Algebrite and KeTLTS

Setsuo Takato
KeTCindy Center, Magnolia Inc., Japan

KeTCindy/KeTCindyJS is a library for LATEX and HTML that we have developed. It is based
on the dynamical geometry system Cinderella. Using it, we have also created a learning data
transfer system named KeTLTS. The brachistochrone curve is an interesting topic in mathematics
and physics education, so we produced the HTML with KeTLTS.

5.2 Possible Orderings of Mode, Median, and Mean in Unimodal
Distributions

Arkadiusz Orłowski
Instytut Informatyki Technicznej, WULS-SGGW, Poland

It is obvious that in symmetric and unimodal probability distribution functions (PDFs), the mode,
median, and mean coincide. In asymmetric distributions, the typical ordering of these measures
follows a predictable pattern: mode < median < mean (for right-skewed PDFs) or mean < median
< mode (for left-skewed PDFs). This pattern is so entrenched that even in modern textbooks it is
seldom, if ever, disputed.

This raises a natural and surprisingly deep question: Are other orderings of mode, median, and
mean possible? In particular, are all four remaining orderings realizable? One can show that some
such different orderings are indeed possible — e.g., by forming artificial mixtures of PDFs or adding
a local peak to distort the density. However, such constructions usually lead to multimodal and
highly irregular distributions, undermining their statistical relevance. While scattered examples
in the literature [1] and [2] show that some alternative orderings may also arise even in unimodal
PDFs, there has been no systematic study exploring the full set of six possible orderings under the
unimodality constraint.

Here, we undertake such a study, leveraging the power of Computer Algebra Systems (CAS)
and symbolic-numeric tools which allow us to explore complex nonlinear relationships between
distribution parameters and the resulting positions of the mode, median, and mean. As a result we
find examples of PDFs providing all six orderings. We compute and plot the corresponding PDFs
to verify unimodality and to visually confirm the relative locations of the parameters. It shows that
even basic statistical notions can exhibit unexpected structural richness, and that CASs provide a
powerful framework for resolving such challenging questions. Possible applications in physics and
engineering are also given.

Keywords: Mode, Median, Mean
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5.3 Classification of Universal Decision Elements UsingComputer
Algebra Systems

Arkadiusz Orłowski
Instytut Informatyki Technicznej, WULS-SGGW, Poland

The concept of Universal Decision Elements (UDEs) emerged in the 1950s [1] and underwent
further development in the 1960s-70s [2] and [3]. These early efforts, although insightful, were
constrained by the limitations of contemporary hardware and lacked exhaustive formal analysis.
Here, we revisit the problem from amodern perspective, leveraging the power of Computer Algebra
Systems to perform a complete and verifiable classification of all possible UDEs within a clearly
defined logical and functional framework.

We introduce a rigorous formalization of the UDE concept, define the precise criteria for their
universality, and use symbolic computation to systematically analyze the entire space of candidate
logical functions. The resulting classification reveals both known and previously unrecognized
universal elements, providing a comprehensive map of the UDE landscape.

Finally, we propose a series of generalizations of the classical UDE framework, extending it to
accommodate reversible computing and quantum information processing. By reframing UDEs in
terms compatible with reversibility, we contribute to the rapidly evolving field of reversible and
quantum computation, and suggest that long-overlooked and largely forgotten constructs from
mid-20th-century logic design may acquire new relevance in the emerging paradigms of reversible
logic synthesis and post-classical computation.

Keywords: Universal Decision Element
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5.4 Study of the secular perturbations in the three-planetary four-
body problem with isotropically varying masses

Saltanat Bizhanova1, Mukhtar Minglibayev1,2 and Alexander Prokopenya3
1 Al-Farabi Kazakh National University, Kazakhstan

2 Fesenkov Astrophysical Institute Observatoriya, Kazakhstan
3 Warsaw University of Life Sciences, Poland

Three-planetary four-body problem with variable masses is considered in a general case when
the masses of the bodies vary isotropically at different rates. The problem is investigated in oscu-
lating elements of aperiodic motion on quasi-conic section [1], [2] and [3], using the equations of
perturbed motion in the Lagrange form. The equation of the perturbed motion were averaged over
the mean longitudes of the bodies in the absence of mean motion resonances and the differential
equations describing the long-term evolution of the orbital parameters were obtained. Numerical
calculations of the evolution of analogs of orbital elements of planets in an exoplanetary system
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were performed using evolutionary equations in the Lagrange form and the WolframMathematica
computer algebra system.

Keywords: Four-body problem, Variable mass, Non-stationary exoplanetary systems, Aperi-
odic motion, Perturbations, Wolfram Mathematica
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5.5 Convergence order in trajectory estimation with piecewise
Bézier cubics based on reduced data

Ryszard Kozera1,2 and Magdalena Wilkołazka3
1 Warsaw University of Life Sciences - SGGW, Poland

2 The University of Western Australia, Australia
3 The John Paul II Catholic University of Lublin, Poland

We discuss the problem of fitting reduced data Qm = {qi}m
i=1 in arbitrary Euclidean space

En. In our setting the interpolation knots {ti}m
i=0 (with qi = γ (ti)) are unknown and need to be

compensated by certain T̂ = {̂ti}m
i=0 (see e.g. [1]). Various fitting schemes combined with some

recipes for T̂ were studied e.g. in [1], [2] and [3] (for dense Qm) or [4] and [5] (for sparse Qm).
In case of Qm dense, the convergence rate (and its sharpness) for a selected interpolation scheme
γ̂ (based on Qm and T̂ ) in approximating γ is a task to examine - see e.g. [2], [3] and [4]. We
analyze the problem of partially fitting Qm by merely interpolating Q̂m = {q0, q3, q6, . . . , qm=3k}
with piecewise cubic Bézier curve γ̂ B (see [6]). The other points serve only as control points. A
sharp quadratic order in γ estimation by γ̂ ◦ φ (with φ : [0, T] → [0, T̂]) is proved. Numerical and
symbolic computation in Mathematica is used to confirm the latter.

Keywords: Interpolation, Reduced Data, Convergence Orders and Sharpness
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5.6 Symbolic computations in studying the stability of nonlinear
oscillations of the mathematical pendulum

Alexander Prokopenya
Warsaw University of Life Sciences – SGGW, Poland

The mathematical pendulum is a simple mechanical system with one degree of freedom and its
motion is determined by the second order ordinary differential equation [1]. Its general solution
may be written in terms of the Jacobi elliptic functions and describes a periodic motion of the
pendulum in the domain ϕ ∈ [−a, a], where a is the amplitude of oscillations. From the other
side, using the Poincare-Lindstedt method [2], one can construct this periodic solution in the form
of power series in the amplitude a that is assumed to be small [3]. As the oscillation frequency
depends on the amplitude, the periodic solution is unstable in Lyapunov sense. The main aim
of this talk is to demonstrate the most important and useful algorithms for studying the stability
of periodic solutions, considering the nonlinear oscillations of the mathematical pendulum as an
example. Implementation of the corresponding algorithms involves quite cumbersome symbolic
computation which may be performed efficiently with the aid of the computer algebra systems, for
instance, Wolfram Mathematica.

Keywords: Nonlinear oscillations, Stability, Symbolic calculation, Wolfram Mathematica
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5.7 Secular perturbations in the four-body systemwith anisotrop-
ically varying masses

Moldir Saparova1, Mukhtar Minglibayev1,2 and Alexander Prokopenya3
1 Al-Farabi Kazakh National University, Kazakhstan

2 Fesenkov Astrophysical Institute Observatoriya, Kazakhstan
3 Warsaw University of Life Sciences, Poland

We consider the classical problem of four bodies attracting each other according to Newton’s
law of universal gravitation. The masses of the bodies are assumed to vary anisotropically with
different rates, which leads to the appearance of reactive forces. Since the differential equations
of motion of the system are not integrable, the problem is studied in the framework of the pertur-
bation theory methods, where quite cumbersome symbolic calculations are involved (see [1], [2]
and [3]). An exact solution to the two-body problem with variable masses describing the aperiodic
motion of the bodies along quasi-conical section is used as the first approximation. The equation
of the perturbed motion are obtained in terms of the osculating orbital elements. Averaging these
equations over the mean longitudes of the bodies in the absence of mean motion resonances, we
derive the differential equations describing the long-term evolution of the orbital parameters. All
relevant symbolic calculations are performed with the aid of the computer algebra systemWolfram
Mathematica.
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Keywords: Four-body problem, Variable mass, Evolutionary equations, Secular perturbations,
Wolfram Mathematica
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5.8 Kinematics of a point-like charge particle in nontrivial non-
homogeneous electric fields of charged washers

Haiduke Sarafian
Pennsylvania State University, USA

In this research-oriented passage, first, we explore the electric field of various charged com-
monly used circular washers. The scope of the study is extended by exploring non-common rect-
angular washers. Thirdly, by combining the circular and rectangular curved washers, an unusual
washer is designed to explore its electric field; see figures. The second exploration segment focuses
on the kinematics of a point-like charged particle within the mentioned fields. The complicated
mathematical issues of the second and third mentioned cases are ironed out by applying a Com-
puter Algebra System (CAS), namely, Mathematica [1], [2] and [3]. Taking advantage of the crafted
numeric solutions of the changeling differential equations, various phase diagrams are constructed
supporting the intuitively predicted outputs are just. All the used Mathematica codes are embed-
ded, making the reproductions of the report reproducible.

Keywords: Electric Field, Non-common Curved Rectangular Washer, Computer Algebra Sys-
tem, Mathematica
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5.9 Oscillation analysis of a bifilar pendulum with Mathematica

Haiduke Sarafian
Pennsylvania State University, USA

Utilizing a Computer Algebra System (CAS), namely Mathematica, the characteristics of a bifi-
lar disk-shaped pendulum have been studied. By applying the Lagrangian methodology, the disk’s
motion equation is formulated. This is conducive to an ODE, as its numeric solution coincides with
intuitive expectation. The period of the oscillations and tension in the strings are calculated and
graphed.

Keywords: Bifilar Pendulum, Oscillation Period, ODE, Mathematica
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5.10 An overview of averaging methods in Hamiltonian pertur-
bation theory, using a CAS

José A. Vallejo
Universidad Nacional de Educación a Distancia, Spain

The Hamiltonian formalism is particularly well-suited for employing perturbation techniques.
A widely used procedure involves transforming the system under consideration into its normal
form [1], followed by the application of an averaging method to derive an approximate dynamics
[2]. The computations in this latter stage can become quite cumbersome to perform manually,
making it an ideal context to leverage the capabilities of a Computer Algebra System (CAS). In
this talk, I will describe several examples illustrating the existence of stable closed orbits within
seemingly chaotic systems, using these concepts and the free CAS Maxima [3] and [4].

Keywords: Normal forms, Averaging methods, Closed orbits
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SPECIAL SESSION 6

Symbolic Linear Algebra and Its Applications

Symbolic Linear Algebra is now a mature subject at the heart of symbolic computation, with many
important sub-disciplines and complementary aspects. Fundamentally, the field is concerned with
computing with linear operators and matrices of mathematical entries, whether over an exact do-
main (such as the integers or a finite field), structured types (such as univariate or multivariate
polynomials, with exact or approximate coefficients), or even more general fields and rings (such
as differential operators). Enormous strides have been made in the development of algorithms and
their realization in innovative software libraries and computer algebra systems. But even after six
decades or more of theory and practice, progress is still being made in the efficiency and com-
plexity, scope of matrix operations, diversity of underlying domains, and exploitation of matrix
structure. Moreover, all advances have the potential to increase the ability for computer algebra
systems to solve larger and more interesting problems and increase their field of application.

In this broad session, we will consider all aspects of the above, including:

• Algorithms for multivariate and parameterized matrices
• Structured linear algebra, e.g. for totally nonnegative matrices
• Sparse matrices and sparse domains
• Black-box and iterative matrix methods
• Complexity of linear algebra algorithms and problems
• Symbolic-numeric methods and stability analyses
• Matrices of differential and difference (Ore) polynomials
• Bohemian matrices, random matrices and experimental matrix algebra
• Implementation and libraries for symbolic linear algebra

We will be especially interested in the application of established and novel symbolic linear algebra
techniques, software, and systems to real-world problems.

Session organizers

• Robert M. Corless (University of Western Ontario, London, Ontario, Canada)
• Mark Giesbrecht (Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada)
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6.1 On the maximal spread of symmetric Bohemian matrices

Robert M. Corless
University of Western Ontario, Canada

Let A be a square matrix with entries in R. The spread of A is defined as the maximum of the
distances between the eigenvalues of A. Let Sm[a, b] denote the set of allm×m symmetric matrices
with entries in the real interval [a, b] and let Sm{a, b} be the subset of Sm[a, b] of Bohemian matrices
with population from only the extremal elements {a, b}. S. M. Fallat and J. J. Xing in 2012 proposed
the following conjecture: the maximum spread in Sm[a, b] is attained by a rank 2matrix in Sm{a, b}.
X. Zhan had proved previously that the conjecture was true for Sm[−a, a]with a > 0. We will show
how to interpret this problem geometrically, via polynomial resultants, in order to be able to treat
this conjecture from a computational point of view. This will allow us to prove that this conjecture
is true for several formerly open cases.

This is joint workwithNeil Calkin, LaureanoGonzalez-Vega, J. Rafael Sendra, and Juana Sendra.

6.2 From Smith forms to spectra to iterative algorithms for sparse
integer matrices

Mark Giesbrecht
University of Waterloo, Canada

Integer matrices are often characterized by the lattice of combinations of their rows or columns.
This is captured nicely by the Smith canonical form, a diagonal matrix of invariant factors, to
which any integer matrix can be transformed through left and right multiplication by unimodular
matrices. Algorithms for computing Smith forms have seen dramatic improvements over the past
40 years, but effective algorithms for large sparse matrices still need improvement.

Integer matrices also possess complex eigenvalues and eigenvectors, and every such matrix
is similar to a unique one in Jordan canonical form. There is a wealth of numerical methods for
computing eigenvalues, and Krylov-type algorithms are effective for sparse matrices.

It would seem a priori that the invariant factors and the eigenvalues would have little to do with
each other. Yet we will show that for “almost all” matrices the invariant factors and the eigenvalues
are equivalent under a p-adic valuation, in a very precisely counted sense.

A much-hoped-for link is then explored for fast computation of Smith forms of sparse integer
matrices, via the better understood algorithms for computing eigenvalues and effective precondi-
tioning.

This is joint work with Mustafa Elsheikh.

6.3 Tools for fast computation of integer matrix normal forms

George Labahn
University of Waterloo, Canada

In this talk we describe a number of tools which are helpful for creating fast algorithms for ma-
trix normal forms of integer matrices. These tools includeminimal denominators, Smithmassagers,

46



30th APPLICATIONS OF COMPUTER ALGEBRA - ACA 2025

integer relation bases and partial linearization of integer matrices. This talk should be viewed as
an introduction o the later talk by A. Storjohann.

We describe a number of tools used either explicitly or implicitly in a series of papers [1] to [3]
for fast computation of Hermite and Smith normal forms of integer matrices. The primary tool
used is a Smith Massager, a pair S, F) which for a given nonsingular A allows us to approximate
A−1 by a rational expression F · S−1 with S diagonal.
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6.4 Computing Hermite normal forms of integer matrices faster
Arne Storjohann

University of Waterloo, Canada

The Hermite normal form of a non-singular integer matrix is a triangular form obtained using
unimodular row operations. A natural goal from a complexity point of view is to show how to
compute the form in about the same number of bit operations as required to multiply together two
integer matrices of the same dimension and size of entries as the input matrix. In this talk, I will
discuss some of our recent work towards achieving this goal. Some subroutines that we need are
fast multiplication of integer matrices with columns having skewed bit-length, and computing the
Hermite form of a matrix column-modulo a given Smith form.

6.5 HomotopyMethods for Computing Roots ofMandelbrot Poly-
nomials

Eunice Y. S. Chan
Chinese University of Hong Kong, Shenzhen, China

The Mandelbrot polynomials are recursively defined as:

p0(z) = 1, pn+1(z) = zpn(z)2 + 1,

and serve as a test problem for exploring the computation of roots in highly structured, recursively
defined polynomials. The roots of these polynomials can be computed by constructing a companion
matrix, referred to as the Mandelbrot matrix, whose eigenvalues correspond to the roots of the
polynomial. The Mandelbrot matrices are recursively defined as:

Mn+1 =

Mn 0 −cnrn
rn 0 0
0 cn Mn

 ,
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where M1 = [−1]. The size of Mn is d = 2n−1, and cn and rn are vectors of size d, given by:

cn =


−1
0
...
0

 , rn =
[
0 0 · · · −1

]
.

This talk investigates the use of homotopy methods as a viable approach to compute the eigen-
values of Mandelbrot matrices by exploiting their recursive structure. Homotopy techniques offer
a divide-and-conquer framework that deforms a simpler base matrix into the target matrix, en-
abling symbolic or numerical tracking of eigenvalues across iterations. Additionally, we extend
this approach to Mandelbrot-like matrices, such as Fibonacci-Mandelbrot, Narayana-Mandelbrot,
and Euclid matrices, which share similar recursive properties. The results highlight the potential of
homotopy methods to efficiently solve eigenvalue problems in structured and recursively defined
matrices.

6.6 Sparse Interpolation in Chebyshev Basis: Early Termination
and Georg Heinig’s Toeplitz Solver

Erich Kaltofen
North Carolina State University, USA

Duke University, USA

Ideas by Kaltofen and Yang [ISSAC 2024] for error-correcting interpolation of polynomials that
are a sparse linear combination of Chebyshev polynomials have led to a new early termination
algorithm for computing the sparsity.

Kaltofen and Lee [JSC 2003] in their early termination algorithms used thresholds to skip over
sporadic probabilistic errors. For early termination in sparse Chebyshev interpolation, thresholds
need an algorithm to step from a sequence of singular leading principal submatrices of a Toeplitz
matrix to the next non-singular leading principal submatrix. For Prony sparse interpolation, the
problem is solved by the 1969 Berlekamp-Massey algorithm, and for Chebyshev sparse interpola-
tion by Georg Heinig’s 1983 Toeplitz algorithm.

Inmy talk, I will describe our new early termination algorithm andHeinig’s Toeplitz solver from
a Berlekamp-Massey algorithmic viewpoint. Heinig’s algorithm, which generalizes the classical
Toeplitz solvers by Levinson and Durbin, takes quadratic time and requires linear space.

This is joint work with Zhi-Hong Yang at Central South University, China.
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History of Computer Algebra

The ACA conference is now 30 years old. The discipline of computer algebra (and symbolic com-
putation) is considerably older: its roots are really lost to history, if we include the Antikythera
Mechanism. That amazing instrument, surely the oldest analogue computer known, was found in
1901 not so very far from the location of this conference. This broad session is not so ambitious as
to want to trace all the prehistory of computer algebra, but we do want to capture as much of that
history as resides in living memory and in publications since the advent of digital computers. This
session could include discussion of the history of the following topics:

• The development of programming languages for computer algebra, e.g. CAMAL and FOR-
MAC

• Applications of computer algebra and symbolic computation, e.g. celestial mechanics and
perturbation methods

• Algebraic algorithms such as the Buchberger algorithm
• Foundational algorithms (e.g. Berlekamp’s algorithm, or modular methods)
• We informally refer to these topics as being of the heritage of Turing, of Laplace, of Hilbert,
and of Tarski.

We define computer algebra and symbolic computation quite broadly and more by exam- ple than
by precept: we take, for instance, anything that is the subject of an ISSAC paper or a SIGSAM
Bulletin/Communications on Computer Algebra paper or a Journal of Symbolic Computation paper
to be “fair game.” This is already extremely broad. Finally, although numerals are also symbols,
we exclude the history of numerical methods from discussion except insofar as it pertains to exact
computation.

There is a recent thorough history of numerical linear algebra by Brezinski, Meurant, and
Redivo-Zaglia available from SIAM Books. We hope by this session to spark discussion that leads
to a similar volume but for computer algebra and symbolic computation. We hope that each of the
speakers at the session at ACA goes on to write a chapter of that future book.

Session organizers

• Robert M. Corless (University of Western Ontario, London, Ontario, Canada)
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• William J. Turkel (University of Western Ontario, London, Ontario, Canada)
• Arthur Norman (Cambridge University, UK)
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7.1 A personal history with computer algebra
Jürgen Gerhard

Maplesoft, Canada

In this presentation, I will report on my personal journey in the fascinating world of computer
algebra, from undergraduate studies until today. Milestones along the way include the first expo-
sure to algebraic extension fields, polynomial factorization, MuPAD, Modern Computer Algebra
[1], Maple, Gröbner bases, ordinals, and multivariate limits.

References
[1] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd

edition, 2013. https://doi.org/10.1017/CBO9781139856065.

7.2 A history of efficiency problems in Maple
Michael Monagan

Simon Fraser University, Canada

TheMaple project began in 1980 at the University of Waterloo. The most important design goal
was that Maple be powerful, that is, Maple was efficient so that it could handle large inputs and
Maple could solve a wide range of algebraic problems.

The early releases of Maple were not particularly efficient. This was not due to poor algebraic
algorithms; rather, it had to do with the choice of the data representation for formulas, poor im-
plementations of some systems algorithms, and design choices that resulted in a loss of efficiency.
This talk presents seven efficiency problems that arose over Maple’s history and some lessons we
learned about writing efficient code in practice.

To assess whether today’s Computer Algebra Systems are faster than those from the 1980s, we
present a timing benchmark comparing the speed of Maxima with Maple, Magma and Singular on
factoring determinants of matrices of polynomials.

7.3 Soft Warehouse, Derive and Computer Algebra
David J. Jeffrey

University of Western Ontario, Canada

The Soft Warehouse (SWH) was a leader in developing computer algebra systems that ran on
small-memory environments. Long before laptops became affordable, students and teachers could
access symbolic computation on the first personal computers. This talk discusses their best-known
product Derive, while relating some of the history of SWH. Later projects, such as AskConstants
and Rubi, which will also be touched on.

7.4 Symbolic-Numeric Computation
Lihong Zhi

Chinese Academy of Sciences, China
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Symbolic-Numeric Computation (SNC) has become a central area within computer algebra,
aiming to bridge the gap between exact symbolic methods and efficient numerical techniques. Its
historical development reflects a broader trend in the evolution of computer algebra: the pursuit
of algorithms that combine mathematical rigor with computational robustness.

The foundations of SNCwere laid in the 1960s and 1970s, with the advent of early symbolic com-
putation systems focused on exact algebraic manipulation. As computational demands increased
in areas such as robotics, control theory, and computer-aided geometric design, the limitations of
purely symbolic or purely numeric approaches became increasingly evident. The 1980s and 1990s
marked a turning point, with foundational advances in approximate polynomial GCDs, symbolic-
numeric factorization, and hybrid solvers for systems of equations.

In parallel, recent years have witnessed growing interest in the formalization of mathematics,
driven by proof assistants such as Lean 4, which enable the precise encoding of mathematical def-
initions, theorems, and algorithms. While formal verification has traditionally been rooted in pure
mathematics, its interaction with symbolic-numeric computation opens a promising new direc-
tion. By formalizing key concepts from computational algebraic geometry and numerical analysis,
researchers can now verify both the correctness and the stability of hybrid algorithms, a critical
step as such methods become increasingly sophisticated and indispensable in applications across
optimization, scientific computing, and data science.

This talk will trace the historical development of symbolic-numeric computation, highlight our
contributions to the field, and examine how formal systems like Lean 4 may help shape the future
of computer algebra.

7.5 30 Years of Applications of Computer Algebra (ACA), A Per-
sonal Perspective

Michael J. Wester and Stanly L. Steinberg
University of New Mexico, USA

This is now the 30th meeting of the Applications of Computer Algebra (ACA) conference series.
The first took place in Albuquerque, NewMexico, USA, May 16–19, 1995. The chairs were Stanly L.
Steinberg and Michael J. Wester. At the time, computer algebra was still fairly young, and the main
established CA conference series was ISSAC, which was fairly theoretical. Stan thought it would
be good to have an “applications” conference in which developers and users were encouraged to
co-mingle, and enlisted me at co-chair. We started out with a few thousand dollar loan from IMACS
(International Association for Mathematics and Computers in Simulation), and a couple of US$10K
grant proposals. Both proposals were funded, and we had a very successful conference at the
University of New Mexico with 93 people in attendance.

Here, we provide a short history of the ACA conference series, with a collection of lessons
learned, sprinkled with anecdotes that prompted them.

7.6 60+ years of Applications: a perspective from Reduce

Arthur Norman
Trinity College, Cambridge, UK
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This meeting of ACA notes that it represents 30 years of consideration of the Applications of
Computer Algebra. Over that timemost of the papers will have concentrated on a presentation how
some rather specific application has been addressed using computational tools, and while often
the progress described will involve devising new or enhancing existing algorithms, the impact
of this on Computer Algebra as a whole will not have been considered. This paper reviews the
development and growth on one particular algebra system as prompted by the applications made
of it. Very often a software base needs time to stabilize (and the underlying computers have needed
to become more powerful) before application can become routine. So here I consider the case of
Reduce which as a system has a history spanning 60 years – i.e. twice the lifetime of ACA – and I
consider how its development over that extended time period has been driven by a wide range of
applications, with that activity continuing up to today.

The lessons that I believe can be drawn from this longitudinal study are:

1. In the early years algebra systems provided fairly basic capabilities, but they found that a very
broad range of applications were still within their scope because the calculations involved
where huge in scale rather than especially technically challenging per se. This is still often
the situation today;

2. Successions of users with the particular scientific problems they were working on have set
the agenda for system builders and algorithm designers by identifying particular aspects
of symbolic computation that those early systems either did not support at all or where
performance was a particular concern;

3. Situationswhere thosewho had problems to solve have codified and packaged their work and
it has been possible to merge that expertise back into the central system have been important
over and over again. Anybody who today sorts out an improved way to make progress in
some application domain should be encouraged to contribute what they have done for the
benefit of others who follow on;

4. Successful transfer from users as above can benefit from an open system where individuals
can observe, access and where necessary modify everything, where the challenge of learning
how to extend the system is not too severe, where license terms do not intrude and where
system portability means that code developed in one arena will readily migrate to all others;

5. The communication channels from users to developers and maintainers may be almost as
important as many fine details of a system when it comes to getting support for a project.
This can mean that migration between the three communities should be encouraged;

6. The particular system – REDUCE – discussed here at over 60 years old and still under active
development as well as use is among the oldest software systems with such a long history.
There are significant parts of the core where the almost original code is still in use. Such
a long life is surely a symptom of it having got some things right, and so everybody con-
cerned about how long their own legacy of calculated results and contributed code will last
might reasonably want to consider how the close interaction between users with challenging
applications and those concerned with the central structure of the system has developed;

7. Anybody who builds their work on the basis of computer algebra might consider whether
spendingmoney on a commercial systemwill guarantee the longer term survival and support
of that system. At the same time they can consider the investment of time (sometimes their
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own, sometimes graduate students or other juniors) in discovering how to build andmaintain
an open source system. It may sometimes not be clear which will be the better long term
policy.

Perhaps the major point that I hope this paper will bring to readers’ attention is that Computer
Algebra systems do not need to be thought of as either magic or as black boxes, and that over
the years a great deal of their development has been driven by those with an applications focus,
so ACA can continue to set priorities for the next enhancements to be made, and it potentially
provides a pool of expertise that could be developed to gradually take over system support and to
provide guidance to future generations.

7.7 Analysis versus Algebra in Symbolic Computation
Robert M. Corless

University of Western Ontario, Canada

The search for formulaic answers via algebra has an ancient history. That such formulæ may
have lacunæ where they do not apply was perhaps first noted explicitly by Cauchy in his 1821
Cours d’Analyse (English translation presented at the MacTutor site):

We must even note that they suggest that algebraic formulas have an unlimited
generality, whereas in fact the majority of these formulas are valid only under certain
conditions and for certain values of the quantities they contain. By determining these
conditions and these values, and by fixing precisely the sense of all the notations I use,
I make all uncertainty disappear.

But battle was joined anew when digital computers arrived on the scene. The early generations of
software performed pretty well all transformations taking an “algebraic” approach and not consid-
ering “analytic” issues1. This had consequences: the tension between algebra and analysis contin-
ues to this day and many current algebra systems will still sometimes give incomplete, misleading,
or flatly incorrect answers to various questions. In this talk I will describe some of the history of
how this battle has unfolded in the symbolic computation community. Some good progress has
been made, and some of today’s algorithms and implementations are genuinely better than most
of those of thirty years ago.

7.8 Portability of EarlyComputerAlgebra Systems: FirstThoughts
Arthur C. Norman1 and Stephen M. Watt2

1 Trinity College, Cambridge, UK
2 University of Waterloo, Canada

We have been involved in the creation of multiple software systems for computer algebra, in-
cluding Reduce, Maple, Axiom and Aldor as well as a number of smaller specialized programs. We
relate some personal observations on how software portability was achieved over from the 1970s
to the present day. We focus on the roles of Lisp and the BCPL family of programming languages
and provide a demonstration of Reduce as it was in 1973.

1I’m not being precise, here. Roughly what I intend to convey by “algebra” versus “analysis” is that algebraic models
of computation typically have a different notion of continuity than do analytic models of computation, if they consider
continuity at all.
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7.9 Symbolic Computation in 1974–1976 in Japan
Tateaki Sasaki

University of Tsukuba, Japan

First, this article surveys the beginning of symbolic computation in Japan which had been led
by Prof. Eiich Goto with his paper “Monocopy and Associative Algorithms in an Extended Lisp”
named HLISP (for Hash-LISP) written in 1974 (we can get it from Web) and the first application
of the HLISP to the computation of so-called “Feynman graphs in the QED (= Quantum Electro-
Dynamics)” by the speaker in 1975. Reading the Goto’s paper, the readers will understand that the
HLISP saves the memory as much as possible by avoiding the appearance of duplicated lists by
hashing, and they will also think that Prof. Goto was stingy. However, if the readers know that
the computer we had used at that time for “large computations” was very restricted in the memory
(about 1Mega-wordsmemory), theywill understandwhyGoto deviced to save thememory severly.
In addition, we survey very brie y how the computer algebra had been popularized in 1980’s in
Japan.

Secondly, this article introduces that Prof. Goto is an unbelievably excellent and fantastic in-
ventor (he often called himself not a researcher but an inventor). One influential example is a
new electron-beam method to evolve the LSI (Large Scale Integrated-circuit) to the VLSI (V means
Very), invented in 1975. The speaker will introduces several of such hardware invented by Goto,
as well as a Lisp machine.
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D-Finite Functions and Beyond: Algorithms, Combinatorics, and
Arithmetic

D-finite functions are solutions of linear differential equations with rational function coefficients.
They form an important class of special functions that appears ubiquitously in algebra, combina-
torics, number theory, and beyond. The class is closed under addition and multiplication, deriva-
tion and integration, various kinds of coefficient extraction, and under taking diagonals of series.
The D-finiteness of generating functions also reflects the complexity of combinatorial classes, with
definite relevance in enumeration. This has long made D-finite functions become a standard data
structure for the manipulation of special functions in symbolic computation and combinatorics.
D-finite functions also admit several extensions amenable to more recent algorithmic treatments,
such as DD-finite functions and series defined by quadratic differential equations.

The goal of this special session is to create an exchanging forum for researchers who work
on the algorithmic, combinatorial, and arithmetic aspects of D-finite and related functions. It is a
continuation of the special sessions that took place in 2022 and 2023.

Session organizers

• Shaoshi Chen (Chinese Academy of Sciences, China)
• Frédéric Chyzak (Inria, France)
• Antonio Jiménez-Pastor (Universidad Politécnica de Madrid, Spain)
• Manuel Kauers (Johannes Kepler University Linz, Austria)
• Veronika Pillwein (Johannes Kepler University Linz, Austria)
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8.1 A direct solver for coupled systems of recurrence equations
over ΠΣ∗-fields

Jakob Obrovsky
Johannes Kepler University Linz, Austria

In this talk I am going to present my work in cooperation with Carsten Schneider on a direct
solver for coupled systems of linear higher-order recurrence equations whose coefficients are given
in terms of nested sums and products.

One strategy for solving such systems is to first decouple the system [3] and [10] to obtain
several scalar equations in only one of the unknowns. These scalar equations then can be solved
using the algorithm in [2]. However, this strategy is rather inefficient if the dimension of the
system is large [6]. For some cases, algorithms have been developed to avoid decoupling and solve
the system in a direct way. These algorithms efficiently find hypergeometric and rational solutions
for the rational difference field K(x) with σ(x) = x + 1 and rational solutions of systems of q-
recurrence equations [1], [5] and [8]. We generalized these methods to obtain an algorithm that
operates over ΠΣ∗-fields [7], incorporating ideas from [4] and [9]. That is, we can directly compute
hypergeometric and rational solutions of coupled systems of recurrence equations over ΠΣ∗-fields.
Within ΠΣ∗-fields it is possible to represent indefinitely nested sums and products, thus covering
in particular a big class of D-finite sequences.

During the talk I will give a rough overview of the main components of the solver and present
examples from the wide range of inputs for which the solver is applicable.

This researchwas funded inwhole or in part by theAustrian Science Fund (FWF) 10.55776/I6130.
Keywords: Coupled Systems, Difference Fields, Rational Solutions, Hypergeometric Solutions
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8.2 Computing D-Finite Symmetric Scalar Products in Order to
Count Regular Graphs

Frédéric Chyzak
Inria, France

In this talk I will retrace the evolution of a family of algorithms for computing scalar products
between series of the theory of D-finite symmetric functions. I will also describe their application to
the computation of differential equations for the generating functions of various classes of regular
graphs and generalizations. This culminates with a recent proof of a conjecture on the enumeration
of vertex-labeled graphswith allowed degrees 3 and 1 and onemore vertex than edges. This is based
on joint past and ongoing works with Hadrien Brochet, Hui Hwang, Manuel Kauers, Pierre Lairez,
Marni Mishna, and Bruno Salvy.

8.3 Guessing and arithmetic of D-algebraic sequences
Bertrand Teguia Tabuguia1
University of Oxford, UK

A sequence is difference-algebraic (or D-algebraic) if finitely many shifts of its general term
satisfy a polynomial relationship. We refer to their equations as algebraic difference equations
(ADEs). A key motivation for considering nonlinear polynomial equations for sequences is to en-
able broader closure properties for their symbolic computations. It is well-known that reciprocals
and ratios of D-finite sequences are “almost never” D-finite, see Chapter 4 of [5], [2]. We recently
proved that any D-finite recurrence can be converted into a non-trivial D-algebraic rational recur-
sion (see (8.1)) using linear algebra [6] and [8].2

This talk focuses on arithmetic operations of D-algebraic sequences, building upon ideas pre-
sented in [1] and [7]. We aim to present a theoretical framework outlining the necessary hypothe-
ses for constructing ADEs satisfied by sums, products, divisions, and various other operations with
D-algebraic sequences. This framework primarily serves to establish the theoretical foundations
for these operations, as it relies on computationally intensive elimination with Gröbner bases and
is therefore not intended for practical use with generic sequences.

Consider, for instance, the sequence of general term sn = Fn
Cn
, where (Fn)n∈N is the Fibonacci

sequence (F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, n ≥ 0), and (Cn)n∈N is the Catalan sequence (C0 =
1, (n + 2)Cn+1 = (4n + 2)Cn, n ≥ 0). Using the algorithm from [8], we get the following D-
algebraic representation for (Cn)n∈N.

Cn+2 =
2Cn+1 (8Cn + Cn+1)

10Cn − Cn+1

, C0 = 1, C1 = 1. (8.1)

With this equation, we could employ the Gröbner bases framework to compute an equation
satisfied by sn. Unfortunately for this particular example, these computations did not complete
even after an hour on our working computer.

An alternative approach is the guess-and-proof paradigm, which aims to construct the desired
equations from the initial terms of (sn)n∈N. In this case, the correctness is readily verifiable using

1The author is supported by UKRI Frontier Research Grant EP/X033813/1.
2The next version of [6] is being updated with the complete proof.
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the closed forms of Fn and Cn. This method yields a successful result within a second, despite our
somewhat ‘straightforward’ implementation. We obtain a third-order ADE of (total) degree 4.

(8.2)

2240s3n+2sn+1 − 140s3n+2sn + 1176s2n+2s
2
n+1 + 52s2n+2sn+1sn − 6912sn+3s2n+2sn+1

+ 2s2n+2s
2
n + 544sn+3s2n+2sn − 140sn+2s3n+1 − 27sn+2s2n+1sn − 832sn+3sn+2s2n+1

− sn+2sn+1s2n − 332sn+3sn+2sn+1sn + 4096s2n+3sn+2sn+1 + 2sn+3sn+2s2n − 512s2n+3sn+2sn

− 140sn+3s3n+1− 34sn+3s2n+1sn +512s2n+3s
2
n+1− 2sn+3sn+1s2n − 32s2n+3sn+1sn − 4s2n+3s

2
n = 0.

We will detail the underlying method. This is our first step toward finding more effective algo-
rithms for the arithmetic of D-algebraic sequences. Similar approaches can be found in [3]. Future
developments could exploit the more advanced guessing techniques described in [4].

Keywords: Algebraic difference equation, D-algebraic guessing, elimination with Gröbner
bases

Acknowledgment. The author is supported by UKRI Frontier Research Grant EP/X033813/1.
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8.4 Integro-differential rings and generalized shuffle relations

Clemens G. Raab1 and Georg Regensburger2
1 RICAM, Austrian Academy of Sciences, Austria

2 University of Kassel, Germany

In this talk, we discuss the fundamental theorem of calculus and its algebraic implications in
differential rings, allowing for functions with singularities and a generalized notion of evaluation.
We give an overview of integro-differential rings and present several examples. This approach gen-
eralizes results such as shuffle relations for nested integrals and the Taylor formula, incorporating
additional terms to account for singularities [1].

In general, not every element of a differential ring has an antiderivative in the same ring.
Starting from a commutative differential ring and a direct decomposition into integrable and non-
integrable elements, we outline aspects of the construction of the free integro-differential ring [2].
This integro-differential closure contains, in particular, all nested integrals over elements of the
original differential ring.
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8.5 AMacMahon Partition Analysis View of Cylindric Partitions
Ali K. Uncu

University of Bath, UK

In this talk, we first give a brief introduction about the Rogers-Ramanujan identites and some
generalizations of the same type, we also define cylindric partitions and explain their connections
with the Rogers-Ramaujan type identities. We will then focus on solving q-recurrences and discov-
ery formulas for a D-finite family of functions which are finite forms of the generating functions
through an application of MacMahon’s partition analysis on cylindric partitions.

8.6 Conservative Matrix Fields - Algebra and Asymptotics
Shachar Weinbaum

Technion - Israel Institute of Technology, Israel

D-finite sequences, also known as Holonomic or P-recursive sequences, are a family of special
functions, which are ubiquitous in many areas of mathematics. The asymptotic properties of these
sequences were detailed in landmark papers by Poincare [1] and Perron [2]. Notably, ratios of
D-finite sequences satisfying the same recurrence, also known as Apéry limits, are at the core of
many irrationality results [3] to [7]. However, finding such sequences with desirable limits and
irrationality measures remains a challenge.

In this talk we introduce an interesting object, the Conservative Matrix Field. This object has
been used in identity proofs [8], in Diophantine approximations, [9], and most recently for unify-
ing hundreds of formulas for π [10] (see Figure 8.1). We will discuss how this object generates a
high dimensional generalization of Apéry limits, by deriving such a sequence from each rational
direction inRd. This generalization keeps the desirable properties of Apéry limits, yet simplifies the
search for useful ones. More concretely, experimental analysis suggests the irrationality measure
of the Apéry limits is continuous with respect to direction, while the actual sequence limit remains
constant (see Figure 8.2). This surprising phenomenon allows for optimization-based search algo-
rithms, such as gradient descent, to be used in the search for irrationality proving approximations.

We will present how Conservative Matrix Fields can be constructed using ideals of finite codi-
mension in an Ore algebra (such as annihilators of D-finite functions), as well as their interesting
phenomenological properties. Finally, we will update about our currently ongoing effort to prove
these properties.

References
[1] Henri Poincaré. Sur les équations linéaires aux différentielles ordinaires et aux différences finies. American

Journal of Mathematics, 1885.
[2] Oskar Perron. Über Summengleichungen und Poincarésche Differenzengleichungen. Mathematische Annalen,

1921.

61



D-FINITE FUNCTIONS AND BEYOND

Figure 8.1: Formula unification by a Conservative Matrix Field. Numerous π formulas harvested
from the literature are automatically arranged as directions in a Conservative Matrix Field defined
over Z3. These formulas include famous ones by Gauss, Euler, and Lord Brouncker. More details
available at [10]

Figure 8.2: Demonstration of the continuity phenomenon of the irrationalitymeasure, shown for
a Conservative Matrix Field defined on Z2; the sequences resulting from it converge to ζ (3). Left:
a graph of 5 angles, and the estimated irrationality measure of the Diophantine approximations
associated with them in the Conservative Matrix Field. Over each data point is a sketch of the
angle in Z2. Right: an interpolation of the irrationality measures of a few dozen different angles,
demonstrating its surprising continuity. Positive values of δ are in green as they indicate these
directions generate sequences that prove irrationality.
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[5] Francis Brown and Wadim Zudilin. On cellular rational approximations to ζ (5). arXiv:2210.03391, 2022.
[6] Wadim Zudilin. An Apéry-like difference equation for Catalan’s constant. arXiv:math/0201024, 2002.
[7] A. I. Aptekarev. On linear forms containing the Euler constant. arXiv:0902.1768, 2009.
[8] William Gosper. Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics Computers In

Mathematics, 1990.
[9] Rotem Elimelech et al. Algorithm-assisted discovery of an intrinsic order among mathematical constants.
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Proceedings of the National Academy of Sciences, 2024.
[10] Tomer Raz et al. From Euler to AI: Unifying Formulas for Mathematical Constants. arXiv:2502.17533, 2025.

8.7 Non-Minimality ofMinimal Telescopers Explained byResidues
Manuel Kauers

Johannes Kepler University, Austria

Joint work with Shaoshi Chen, Christoph Koutschan, Xiuyun Li, Ronghua Wang, and Yisen
Wang

We will report on our joint ISSAC’25 paper. In this paper, elaborating on an approach recently
proposed by Mark van Hoeij, we continue to investigate why creative telescoping occasionally
fails to find the minimal-order annihilating operator of a given definite sum or integral. We offer
an explanation based on the consideration of residues.

8.8 A purity theorem for Mahler equations
Julien Roques

Université Lyon 1, France

Let p ≥ 2 be an integer. This talk concerns (linear) p-Mahler equations, i.e., linear functional
equations of the form

a0(z)f(z) + a1(z)f(zp) + · · ·+ ad(z)f(zp
d
) = 0, (8.3)

where the coefficients a0, . . . , ad belong to Q(z) and satisfy a0ad 6= 0. For instance, the generating
series of p-automatic sequences—ormore generally, of p-regular sequences—satisfy such equations.

Hahn series play a key role in the study of p-Mahler equations. Roughly speaking, Hahn series
generalize Puiseux series by allowing arbitrary rational exponents of the indeterminate, provided
that the set that supports them is well-ordered. Their significance in our context is made clear by
the following result: the difference field (H , φp), where H = Q((zQ)) is the field of Hahn series
with coefficients inQ and value groupQ andwhere φp is the field automorphism ofH sending f(z)
on f(zp), has a difference ring extension (R, φp) with field of constants Rφp = {f ∈ R | φp(f) = f}
equal to Q such that

• for any c ∈ Q×, there exists ec ∈ R× satisfying φp(ec) = cec;
• there exists ℓ ∈ R satisfying φp(ℓ) = ℓ+ 1;
• any p-Mahler equation of the form (8.3) has d solutions y1, . . . , yd ∈ R that are Q-linearly
independent and of the form

yi =
∑

(c,j)∈Q××Z≥0

fi,c,jecℓj, (8.4)

where the sum has finite support and the fi,c,j ∈ H satisfy p-Mahler equations.

In this talk, we will focus on the growth of the logarithmic Weil height of the coefficients of the
Hahn series that arise when solving p-Mahler equations. We will report on recent joint work with
C. Faverjon, in which:
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• we show that five distinct asymptotic growth behaviors can occur, thereby generalizing a
previous result by B. Adamczewski, J. P. Bell, and D. Smertnig about p-Mahler series;

• we establish a purity theorem reminiscent of classical purity theorems for G-functions due
to D. and G. Chudnovsky, and for E-functions (and more generally, for holonomic arithmetic
Gevrey series) due to Y. André.

8.9 Non-commutative D-finite & D-algebraic power series and
formal languages

Robert Green and Joshua Grochow
University of Colorado, USA

We define and study non-commutative analogues of multivarite D-finite and D-algebraic gen-
erating functions, and the complexity classes of languages corresponding to them. In particular,
we give both equational (fixed point) characterizations and automata machine model characteri-
zations of these classes, and relate them to standard language classes (regular, linear, context-free,
and tree-adjoining). We prove several inclusions and separations between our new classes and
each other, and our new classes and classical language classes. Among our more surprising results
are:

• Left D-finite and right D-finite languages are not the same, unlike the case of left linear and
right linear (which both give exactly the regular languages).

• There are non-commutative algebraic power series (corresponding to CFLs) that are not D-
finite, in contrast to the classical theorem that commutative algebraic power series are D-
finite.

• There are leftD-finite languages that are not even tree-adjoining, and there are tree-adjoining
languages that are not even D-algebraic.

In addition to proving many results on these classes, we also highlight many open questions ripe
for future research.
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Algebraic geometry from an algorithmic point of view

From the end of the 19th century to most of the 20th century several mathematicians made a
conscious effort to avoid constructive arguments, emphasizing existential methods instead. The
final decades of the 20th century witnessed a return to a constructive approach.

In this context, Computer Algebra grew up as a branch of mathematics and computer science
that focuses on the development and implementation of algorithms and software systems to per-
form symbolic mathematical computations, also with a promotion of interactions with different
topics, such as Algebraic Geometry and Commutative Algebra.

The first obvious reason of this interplay is that algorithms allow the construction of examples,
from which researchers can deduce possible solutions to the questions they deal with. In this con-
text, the necessity to design new algorithms for specific topics of interest or to optimize the existing
ones often arises. Indeed, several existing algorithms theoretically allow some explicit computa-
tions (e.g. Groebner Bases), but in practice they do not give the desired result in a reasonable time,
or using a reasonable amount of memory. The second less obvious reason is that projecting an
algorithm can give a new insight in the problem one is trying to solve.

This synergy creates a virtuous cycle, where the development of Computer Algebra systems
drives new mathematical discoveries, which in turn inspire further innovations in algorithm de-
sign. This session focuses on investigations in Algebraic Geometry from a computational point of
view and on possible consequent applications in other fields (e.g. coding theory, cryptography,
computer graphics). Hence, it aims at gathering specialists from different areas (Algebraic Ge-
ometry, Commutative Algebra, Computer Algebra, Applied Mathematics) and discuss interactions
between them. Expected topics of presentations include (but are not limited to):

• algebraic and combinatorial aspects of problems in Algebraic Geometry;
• algorithms and constructive methods for Algebraic Geometry and applications;
• implementation of algorithms and optimization, possibly with comparisons with existing
ones.

Session organizers

• Cristina Bertone (Dipartimento di Matematica G. Peano, Università di Torino, Italy)
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• Francesca Cioffi (Dipartimento di Matematica e Applicazioni R. Caccioppoli, Università di
Napoli Federico II, Italy)
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9.1 Computational Classification andGeneration ofAlgebraic Sur-
faces and Curves via Algorithms

Meirav Amram
Shamoon College of Engneering, Israel

We present algebraic, geometric, topological and algorithmic methods in the classification of
algebraic surfaces and curves. We present recent research and softwares; one of them helps in
finding Zariski pairs.

9.2 On the shape of Betti diagrams of edge ideals

Sara Asensio
University of Valladolid, Spain

Since edge ideals were first introduced in 1990, they have been a clear example of the connection
between commutative algebra and graph theory. In this talk, we will focus on the study of Betti
diagrams of this type of ideals using a combination of homological and combinatorial tools that
allow us to take advantage of the properties of some associated graphs. In particular, we will
provide families of graphs whose associated edge ideals have somehow special characteristics.

9.3 Khovanskii bases in computer algebra

Barbara Betti1, Viktoriia Borovik2, Leonie Kayser1, Marta Panizzut3 and Simon Telen1

1 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
2 University of Osnabrück, Germany.

3 UiT - The Arctic University of Norway, Tromso, Norway

In this talk we will recall the definition of Khovanskii bases, also known as Sagbi bases, and
make a parallel with properties of Gröbner bases. Inspired by several applications of Gröbner bases
in solving 0-dimensional polynominal systems, wewill provide analogous applications in computer
algebra using Khovanskii bases. These include the introduction of an eigenvalue algorithm based
on the assumption that the equations are homogeneous with respect to a finite Khovanskii basis
and homotopy continuation methods that exploit toric degenerations.

9.4 Solving parametric polynomial systems using generic Ratio-
nal Univariate Representation

Corniquel Florent
IMJ-PRG and INRIA Paris, France

Given f1, . . . , fn ∈ Q[W,X]whereW = [W1, . . . ,Ws] is a list of parameters andX = [X1, . . . ,Xn]
a list of indeterminates, we propose an extension of the Rational Univariate Representation (RUR)
to parametric systems that are zero-dimensional for almost all values of parameters.
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9.5 Homogenous Instanton Bundles on Grassmannians
Özhan Genç

Jagiellonian University, Poland

Wewill provide a full classification of irreducible homogeneous h-instanton bundles on a Grass-
mannian G = Gr(k, n) where h is the hyperplane section of G equipped with the Plücker embed-
ding.

9.6 Computational Generation of Zariski Pairs in Conic-Line Ar-
rangements

Gal Goren
Technion Institute of Technology, Israel

In this talk, we focus on Zariski pairs arising in arrangements of a conic and n lines, presenting
a computational approach to identifying all such pairs for given values of n.

9.7 Gröbner bases native to finitely generated commutative alge-
bras with term order, with application to the Hodge algebra
of minors

Abhiram Natarajan
University of Warwick, UK

Standard Gröbner basis methods are often too inefficient to handle even small cases arising
in areas such as computational complexity theory—for instance, the orbit closure of the 3 × 3
determinant in geometric complexity theory. Motivated by this, we develop a theory of Gröbner
bases tailored to algebras with straightening law (ASLs, or Hodge algebras), and more generally
to any finitely generated commutative algebra over a field F admitting a suitable term order. We
instantiate this theory in the bideterminant ASL on a polynomial ring—generated by products of
minors of a variable matrix—defining what we call bd-Gröbner bases. This framework packages
several results on bideterminants in a clean form, including a one-line proof of a bd-Gröbner basis
for the ideal of t-minors for any t, which is universal in our sense. While ordinary Gröbner bases
for such ideals are known, their proofs are more involved.

9.8 The Gröbner basis for powers of a general linear form in a
monomial complete intersection

Filip Jonsson Kling∗, Samuel Lundqvist∗, Fatemeh Mohammadi∗∗ and Matthias Orth∗∗,1
∗ Stockholm University, Sweden

∗∗ KU Leuven, Belgium
1M. Orth (presenter of talk) was partially supported by the FWO grants G0F5921N (Odysseus) and G023721N, and

by the KU Leuven grant iBOF/23/064.
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In a polynomial ring over a field of characteristic zero, we study almost complete intersection
ideals generated by powers of the variables and a power of the sum of the variables. Using a lower
bound for the Hilbert series of the quotient rings defined by almost complete intersections, we
obtain all reduced Gröbner of any such almost complete intersection ideal. Our method is mainly
combinatorial in nature, as we focus on an analysis of the initial ideal. With any monomial in the
vector space basis of an Artinian monomial complete intersection, we associate a lattice path, and
introduce a reflection operation on these paths that allows for a crucial counting argument. In
particular we obtain a new proof for the fact that Artinian monomial complete intersections have
the strong Lefschetz property over fields of characteristic zero.

9.9 The moduli space of rational elliptic surfaces
Simone Pesatori

University of Roma Tre, Italia

We generalize the notion of resultant of two polynomials and stratify the space of pairs of ho-
mogeneous polynomials in two complex variables in terms of the multiple and common roots they
have. As an application, we stratify the boundary of the moduli space of rational elliptic surfaces
in terms of the configurations of singular fibers the surfaces admit. We explain the limitation of
our machinery and how a computational method could solve it.

9.10 A computer-aided construction of non-homeomorphic dou-
ble Kodaira fibrations that possess the same biregular in-
variants

Pietro Sabatino
Institute for High Performance Computing and Networking (ICAR-CNR), Italy

Let Σb be a closed Riemann surface of genus b. We investigate finite quotientsG of the pure braid
group on two strands P2(Σb) that do not factor through π1(Σb×Σb). Building on previous work on
special systems of generators on finite groups called diagonal double Kodaira structures, we prove
that if G has not order 32, then |G|≥ 64. We completely classify the cases where equality holds
(see [8]). As a geometric application of these algebraic results, we construct two 3-dimensional
families of double Kodaira fibrations with the same biregular invariants and Betti numbers but
different fundamental groups. When investigating groups of order 64, the computational algebra
system GAP4 is central to our approach. Code is available on GitHub, [5]. This is a joint work with
Francesco Polizzi.

Acknowledgements

The author was supported by project FAIR (Future AI Research), under program NRRP MUR funded by
EU-NGEU (PE00000013)
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9.11 Deterministic Determination of Axial Constants and Sec-
tional Regularities

Amir Hashemi1, Rozhin Sadr2 and Werner M. Seiler2
1 Isfahan Technical University, Iran

2 Kassel University, Germany

We consider some generic notions in algebraic geometry, axial constants, sectional regularity
and generic annihilator numbers, and related them to deterministic notions of genericity to make
them effectively computable. Our approach is based on the theory of Pommaret bases.

9.12 Improving convex-dense bivariate factorization
Martin Weimann

Université Caen Normandie, France

We propose a new algorithm for factoring a bivariate polynomial F ∈ K[x, y] which takes fully
advantage of the geometry of the Newton polygon of F. Under some non degeneracy hypothesis,
the complexity is Õ(Vrω−1

0 )whereV is the volume of the polygon and r0 is its minimal lattice length,
an easy-to-compute upper bound for the number of indecomposable Minkovski summands. The
proof is based on a new fast factorization algorithm in K[[x]][y] with respect to an augmented
valuation, a result which has its own interest.

9.13 Geometric Foundations for Transformer in Gröbner Basis
Computation

Yuta Kambe1, Yota Maeda2,3 and Tristan Vaccon4

1 Mitsubishi Electric, Japan
2 Technische Universität Darmstadt, Germany

3 Tohoku University, Japan
4 Université de Limoges, France

We provide a theoretical foundation for Transformer-based computation of Gröbner bases by
proving the geometric generality of existing dataset generation algorithms and introducing an
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extended sampling method. Under a mild heuristic and assuming a Hilbertian base field, we show
that the training examples constructed via random elementary matrix transformations are Zariski
dense in the space of generating sets of a fixed ideal. This guarantees that Transformers trained
on such data can, in principle, learn any generic Gröbner basis. Our extended algorithm controls
sparsity, interaction, and coefficient distributions, further improving dataset richness and empirical
performance.

9.14 Combinatorics of Schubert Cells in Random Network Cod-
ing

Alessandro Neri
University of Naples Federico II, Italy

In 2009 Etzion and Silberstein provided a combinatorial upper bound on the largest dimension
of a space of matrices over a finite field whose nonzero matrices are supported on a given Ferrers
diagram and all have rank lower bounded by a fixed positive integer r. In the same paper, they also
conjectured that such an upper bound is always tight. Since then, their conjecture has been verified
in a number of cases, but as of today it still remains widely open. In this work, we investigate
the notion of reducibility of Ferrers diagrams: a diagram D reduces to D′ if an optimal matrix
space supported on D can be obtained by shortening and/or inclusion of an optimal matrix space
supported onD′. This induces a natural notion of irreducibility of Ferrers diagrams, and the validity
of the conjecture for irreducible diagrams implies the validity of the full conjecture. Moreover,
following this notion, we can provide the Hasse diagram of Young’s lattice with an orientation.
This produces a directed graph in which sources correspond to irreducible diagrams. This is a Joint
work with Hugo Sauerbier Couvée.

9.15 Constructing nonspecial divisors in the moduli space of cu-
bic fourfolds

Elena Sammarco
Università degli studi Roma Tre, Italia

We present a geometric approach to construct some nonspecial divisors in the moduli space of
cubic fourfolds and the possibility to generalize it using computational methods applied to explicit
equations. Furthermore, we raise the question of determining whether, given a cubic fourfold with
a specific equation, it belongs to the divisors just defined.
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SPECIAL SESSION 10

Algebraic and Algorithmic Aspects of Differential and Integral
Operators Session

The algebraic/symbolic treatment of differential equations is a flourishing field, branching out in
a variety of subfields committed to different approaches. In this session, we want to give special
emphasis to the operator perspective of both the underlying differential operators and various
associated integral operators.

In particular, we invite contributions in line with the following topics:

• Symbolic Computation for Operator Algebras
• Factorization of Differential/Integral Operators
• Linear Boundary Problems and Green’s Operators
• Initial Value Problems for Differential Equations
• Symbolic Integration and Differential Galois Theory
• Symbolic Operator Calculi
• Algorithmic D-Module Theory
• Rota-Baxter Algebra
• Differential Algebra
• Discrete Analogs of the above
• Software Aspects of the above

Previous ACA sessions were held at

• Hagenberg 2008
• Montréal 2009
• Vlora 2010
• Houston 2011
• Sofia 2012
• Malaga 2013
• New York 2014
• Kalamata 2015
• Kassel 2016
• Santiago de Compostela 2018
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• Montréal 2019
• ONLINE 2021,
• Warsaw 2023

We have published an MCS Special Issue based on the 2008-10 sessions and a Springer LNCS Post-
proceedings Volume based on the 2011-12 sessions.

We have co-edited a Special Issue with Alexey Ovchinnikov on Computational Aspects of Dif-
ferential/Difference Algebra and Integral Operators for the journal Advances in Applied Mathe-
matics based on ACA 2014 and 15.

Session organizers

• Moulay Barkatou (University of Limoges, XLIM, France)
• Thomas Cluzeau (University of Limoges, CNRS, XLIM, France)
• Clemens Raab (RICAM, Austrian Academy of Sciences, Linz, Austria)
• Georg Regensburger (University of Kassel, Germany)
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10.1 The indicial equation of the product of linear ordinary dif-
ferential operators

Sergei A. Abramov
Russian Academy of Sciences, Russia

The roots of the indicial equation, constructed for a given linear ordinary differential operator,
provide an important information on the solutions of the corresponding homogeneous differential
equation. Operators are considered whose coefficients are formal Laurent series. The structure of
the indicial equation of the product of given differential operators is described.

10.2 Separated Variables on Plane Algebraic Curves
Manfred Buchacher

Johannes Kepler Universität Linz, Austria

We consider equations of the form

r(x, y) + q(x, y)p(x, y) = f(x)− g(y),

for rational functions r(x, y), q(x, y), p(x, y), f(x) and g(y) in x and y overK, and explain how they
can be solved based on the ideas developed in [1] to [3]. The procedure we present reduces the
non-linear problem to a linear one. However, the procedure is just a semi-algorithm. It terminates,
whenever the equation has a non-trivial solution, but it may not, if there is none. Termination
depends on a dynamical system on the curve associated with p and the location of the poles of r
thereon. It is still an open question how the semi-algorithm could be turned into an algorithm.

The problem has a field theoretic interpretation. LetK(x, y) be the field generated by elements
x and y satisfying the (only) relation p(x, y) = 0, and let K(x) and K(y) be the subfields generated
by x and y, respectively. Then the above equation has a (non-trivial) solution if and only if r(x, y)
is an element of K(x) + K(y). There are two particular cases that are interesting in themselves:
the case r = 0, and the case g = 0. The former corresponds to the problem of computing the
intersection of K(x) and K(y), the latter to the problem of deciding whether r(x, y) is an element
of K(x) and finding all representations thereof in terms of x.

The problem arises in enumerative combinatorics, when solving discrete differential equa-
tions by reducing partial DDEs to systems of ordinary ODDEs [4]. It also arises in parameter-
identification problems in ODE models [5], and in problems of image recognition [6].
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10.3 Topological closure of formal powers series ideals and ap-
plication to topological rewriting theory

Cyrille Chenavier
University of Limoges, France

We will present the paper [1], where we investigate formal power series ideals and their re-
lationship to topological rewriting theory. Since commutative formal power series algebras are
Zariski rings, their ideals are closed for the adic topology defined by the maximal ideal generated
by the indeterminates. In [1], we provide a constructive proof of this result which, given a formal
power series in the topological closure of an ideal, consists in computing a cofactor representation
of the series with respect to a standard basis of the ideal. We apply this result in the context of
topological rewriting theory, where two natural notions of confluence arise: topological conflu-
ence and infinitary confluence; in general, infinitary confluence is a strictly stronger notion than
topological confluence. Using topological closure of ideals, we finally show that in the context of
rewriting theory on commutative formal power series, infinitary and topological confluences are
equivalent when the monomial order considered is compatible with the degree.

References
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10.4 Hypergeometric solutions of elliptic difference equations

Thierry Combot
University of Bourgogne, France

In this presentation, we will present an algorithm to compute hypergeometric solutions of a
linear difference equation on an elliptic curve.

Consider an elliptic curve C with coefficients in Q and δ ∈ C(Q) a non torsion point. We
consider an elliptic difference equation

∑l
i=0 ai(p)f(p⊕i.δ) = 0with⊕ the elliptic addition law and

ai polynomials on C. We present an algorithm to compute rational solutions, then an intermediary
class we call pseudo-rational solutions, and finally hypergeometric solutions, which are functions
f such that f(p⊕ δ)/f(p) is rational over C.

References
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10.5 An Effective Version of the Grothendieck p-curvature Con-
jecture for Order One Differential Equations

Florian Fürnsinn
University of Vienna, Austria
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To a linear differential equation with polynomial coefficients over the rational numbers one
can attach, for all prime numbers p, a linear map called the p-curvature. The Grothendieck p-
curvature conjecture asserts that the algebraicity of a full basis of solutions of such a differential
equation is equivalent to the vanishing of the p-curvatures for almost all prime numbers p. In 1974
Honda provided a proof of this conjecture for order one equations [2], by reducing the problem to
a theorem of Kronecker [3], which provides a local-global criterion for the splitting of polynomials
over the rational numbers. In 1985 Chudnovsky and Chudnovsky gave a new proof of Kronecker’s
result [1], and with it of Honda’s result, using Padé approximation.

In this talk I will explain how to use the proof of the Chudnovsky brothers to make Honda’s
result effective. More precisely, given a linear differential equation of order one with polynomial
coefficients over the rational numbers we deduce an upper bound on the number of p-curvatures
to be computed in order to decide the algebraicity of all solutions of the equation.

This talk is based on ongoing joint work with Lucas Pannier.
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10.6 The Shimizu–Morioka System Has No Nontrivial Darboux
Polynomials

Khalil Ghorbal
Inria, France

In 1980 Shimizu and Morioka [3] presented a simple three dimensional ordinary differential
equation as a model to study the convection of turbulent flows (i.e. flows with high Rayleigh
numbers). More recently, Huang et al. [2] studied the Darboux integrability of the system and
showed that it has no nontrivial Darboux polynomial of total degree less than four. They further
conjectured that the system has no nontrivial Darboux polynomial for any positive total degree.
We prove that this is indeed the case leveraging our seminal work on using the concept of generic
polynomials to systematically study the existence of Darboux polynomials [1].

This is a joint work with Maxime Bridoux (Inria, France).
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10.7 Solutions of Knizhnik-Zamolodchikov equation by dévissage
V. Hoang Ngoc Minh

University of Lille, France

In this work, solutions of universal differential equation (see (10.2) below, when the solu-
tions exist) are provided using Volterra expansions for the Chen series. Ultimately, applied to
the Knizhnik-Zamolodchikov (see (10.8) below) [1], this provides by dévissage1 the unique grou-
plike solution satisfying asymptotic conditions. These solutions use a Picard-Vessiot theory of
noncommutative differential equations and various factorizations of Chen series over the alphabet
Tn := {ti,j}1≤i<j≤n and with coefficients in a commutative rings [2]. In particular, in the ring of
holomorphic functions, (H(V), 1H(V)), over the simply connected differentiable manifold of Cn, V ,
the coefficients {〈S | w〉}w∈T ∗

n
of S are holomorphic and {∂i〈S | w〉}1≤i≤n are well defined. So is the

differential d〈S | w〉 = ∂1〈S | w〉dz1 + · · · + ∂n〈S | w〉dzn. Thus, d can be defined over H(V)〈〈Tn〉〉
by

S =
∑
w∈T ∗

n

〈S | w〉w, dS =
∑
w∈T ∗

n

(d〈S | w〉)w, (10.1)

leading to the following noncommutative differential equation over H(V)〈〈Tn〉〉,

dS = MnS, where Mn :=
∑

1≤i<j≤n

ωi,jti,j ∈ LieΩ(V)〈Tn〉. (10.2)

In particular, to the partition Tn, onto Tn−1 and Tn := {tk,n}1≤k≤n−1, corresponds the split of Mn:

Mn = M̄n +Mn−1, where Mn−1 ∈ LieΩ(V)〈Tn−1〉 and M̄n :=
n−1∑
k=1

ωk,n tk,n ∈ LieΩ(V)〈Tn〉.(10.3)

For N = n(n− 1)/2, the forms {ωi}1≤i≤N and the alphabet X := {xk}1≤j≤N in bijection with Tn,

dS = MnS, where Mn :=
N∑

i=1

ωixj ∈ LieΩ(V)〈X〉, (10.4)

Mn =
∑

1≤k≤N

Fk xk =
∑
1≤l≤n

Ul dzl, where Fk =
∑
1≤l≤n

fl,k dzj and then Ul =
∑

1≤k≤N

fl,k xk. (10.5)

For S 6= 0 in the integral ring H(V)〈〈Tn〉〉, if S satisfies (10.2) then, by (10.5), one might have

dS = MnS =
∑
1≤l≤n

(∂lS) dzl, with ∂lS = UlS. (10.6)

Since ∂j∂iS = ((∂jUi) + UiUj)S and ∂i∂jS = ∂j∂iS then ((∂jUi) − (∂iUj) + [Ui,Uj])S = 0 and then
∂iUj − ∂jUi = [Ui,Uj], 1 ≤ i, j ≤ n. Or equivalently, dMn = Mn ∧Mn inducing a Lie ideal of relators
among {ti,j}1≤i<j≤n, Jn, and (10.2) are solved over H(V)〈〈Tn〉〉 and then H(V)〈〈Tn〉〉/Jn.

According to Drinfel’d,Mn is flat and (10.2) is completely integrable [1]. Solution of (10.2), when
exists, can be computed by convergent Picard’s iteration over the topological basis {w}w∈T ∗

n
, i.e.

F0(ς, z) = 1H(V), Fi(ς, z) = Fi−1(ς, z) +
∫ z

ς
Mn(s)Fi−1(s), i ≥ 1, (10.7)

1I.e. solutions of KZn, for n ≥ 3, are obtained using those of KZn−1 and the generating series of hyperlogarithms
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and the sequence {Fk}k≥0 admits the limit, called Chen series of the holomorphic forms {ωi,j}1≤i<j≤n

and along a path ς ⇝ z over V , modulo Jn, is viewed as the fundamental solution of (10.2).
More generally, by a Ree’s theorem, Chen series is grouplike belonging to eLieH(V)⟨⟨Tn⟩⟩ and can be

put in the MRS factorization form [2] and [4]. Moreover, since the rank of the module of solutions
of (10.2) is at most equals 1 then, under the action of the Haussdorf group, i.e. eLieC⟨⟨Tn⟩⟩ playing the
rôle of the differential Galois group of (10.2) [2].

From these, in practice, infinite solutions of (10.2) can be computed using convergent iterations
of pointwise convergence overH(V)〈〈Tn〉〉 and thenH(V)〈〈Tn〉〉/Jn. A challenge is to explicitly and
exactly compute these limits of convergent sequences of (not necessarily grouplike) series on the
dual topological ring and over various corresponding dual topological bases.

Applying (10.2)–(10.3), substituting ti,j by ti,j/2iπ and specializing ωi,j to d log(zi − zj) and then
V to the universal covering of the configuration space of n points on the complex plane Cn

∗ :=

{z = (z1, . . . , zn) ∈ Cn|zi 6= zj for i 6= j}, denoted by C̃n
∗, various expansions of Chen series over

H(C̃n
∗)〈〈Tn〉〉 provide solutions of the differential equation dF = ΩnF, so-called KZn equation and

Ωn is so-called universal KZ connection form, defined by

Ωn(z) :=
∑

1≤i<j≤n

ti,j
2iπ d log(zi − zj) = Ω̄n + Ωn−1, where Ω̄n(z) :=

n−1∑
k=1

tk,n
2iπ d log(zk − zn).(10.8)

In particular, let Σn−2 = {z1, . . . , zn−2} ∪ {0} (for zn−1 = 0) be the set of singularities and
s = zn. For zn → zn−1, the connection Ω̄n behaves as (2iπ)−1Nn−1, where Nn−1 is nothing but
the connection of the differential equation satisfied by the noncommutative generating series of
hyperlogarithms

Nn−1(s) := tn−1,n
ds
s
−

n−2∑
k=1

tk,n
ds

zk − s
∈ LieΩ(C̃\Σn−2)

〈Tn〉. (10.9)

Let α z
ς be the function on T ∗

n , mappingwords to iterated integrals over the holomorphic 1-forms
{d log(zi−zj)}1≤i<j≤n along the path ς ⇝ z over C̃n

∗. The Chen series of {d log(zi−zj)}1≤i<j≤n can be
used to determine solutions of (10.8) and depends on the differences {zi − zj}1≤i<j≤n. Furthermore,
the universal KZ connection form Ωn satisfies dΩn −Ωn ∧Ωn = 0, inducing the relators associated
to following relations on {ti,j}1≤i<j≤n and generating the Lie ideal JRn of LieH(V)〈Tn〉,

Rn =


[ti,k + tj,k, ti,j] = 0 for distinct i, j, k, 1 ≤ i < j < k ≤ n,
[ti,j + ti,k, tj,k] = 0 for distinct i, j, k, 1 ≤ i < j < k ≤ n,

[ti,j, tk,l] = 0 for distinct i, j, k, l,
{
1 ≤ i < j ≤ n,
1 ≤ k < l ≤ n.

(10.10)

Then solutions of (10.8) are expected in H(C̃n
∗)〈〈Tn〉〉/JRn .

For zn → zn−1, grouplike solutions of (10.8) are of the form h(zn)H(z1, . . . , zn−1), where h
satisfies the differential equation df = (2iπ)−1Nn−1f such that h(zn) ∼zn→zn−1 (zn−1 − zn)tn−1,n/2iπ

and H satisfies the following differential equation

dS = Ωϕn
n−1S, where Ωϕn

n−1(z) =
∑

1≤i<j≤n−1

d log(zi − zj)ϕ(z0,z)
n (ti,j)/2iπ (10.11)

and ϕ(z0,z)
n (ti,j) ∼zn→zn−1 ead− log(zn−1−zn)tn−1,n/2iπ ti,j mod Jn.
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LetDTn (resp. DTn) denote the diagonal series on the ⊔⊔-bialgebra (Q〈Tn〉, conc, 1T ∗
n
,Δ⊔⊔ ) (resp.

(Q〈Tn〉, conc, 1T∗n ,Δ⊔⊔ )) endowed the dual bases {Pl}l∈LynTn and {Sl}l∈LynTn (resp. {Pl}l∈LynTn and
{Sl}l∈LynTn) indexed by Lyndon words on LynTn (resp. LynTn) [4]. Then solutions of (10.8) can be
computed by the following recursion

Vk(ς, z) = V0(ς, z)
∑

ti,j∈Tn−1

∫ z

ς
ωi,j(s)S−1

0 (ς, s)ti,jVk−1(ς, s) (10.12)

with V0(ς, z) = (α z
ς ⊗ Id)DTn , or with V0(ς, z) = (α z

ς ⊗ Id)DTn mod [LieH(V)〈〈Tn〉〉,LieH(V)〈〈Tn〉〉].
Finally, there effectively exists {FSl}l∈LynTn such that the sequence {Vk}k≥0 in (10.12) converges, in
the first case, to the unique solution of (10.8) satisfying asymptotic conditions and achieving the
dévissage:

FKZn =

↘∏
l∈LynTn

eFSlPl

(
1T ∗

n
+

∑
v1,...,vk∈T∗n ,t1,...,tk∈Tn−1,k≥1

Fa(v1t1)⊔⊔
2

...⊔⊔
2

a(vktk)r(v1t1) . . . r(vktk)
)

︸ ︷︷ ︸
functional expansion of solution of KZn−1

(10.13)

=

↘∏
l∈LynTn−1

eFSlPl

( ↘∏
l=l1l2,l2∈LynTn−1,l1∈LynTn

eFSlPl

) ↘∏
l∈LynTn

eFSlPl (10.14)

while in the second case, it leads to an approximation of (10.13):

FKZn ≡ e
∑

t∈Tn Ftt
(
1T ∗

n
+

∑
v1,...,vk∈T∗n ,t1,...,tk∈Tn−1,k≥1

Fa(v̂1t1)⊔⊔
2

(...⊔⊔
2

(a(v̂ktk))...)r(v1t1) . . . r(vktk)
)
, (10.15)

where ⊔⊔

2

denotes the half-shuffle product [3] and, for any w = t1 . . . tm ∈ T ∗
n ,

a(w) = (−1)mtm . . . t1, r(w) = adt1 ◦ · · · ◦ adtm−1 tm, ŵ = t1 ⊔⊔ . . . ⊔⊔ tm. (10.16)
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10.8 Recent Advancements in Noncommutative Gröbner Basis
Software

Clemens Hofstadler
Johannes Kepler University, Austria

In recent years, noncommutative Gröbner bases in free algebras (also known as Gröbner-
Shirshov bases) have found important applications in areas such as (linear) control theory [9],
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automated theorem proving for operator statements [3], [4], [10] and [12], as well as in graph [11]
and game theory [8].

These applications crucially rely on the ability to compute Gröbner bases in free algebras effi-
ciently. While software for commutative Gröbner basis computations has seen remarkable progress
in recent years (see [1] and references therein), noncommutative tools seem to lag behind. They
often lack the same level of efficiency and sophistication, and mostly rely on outdated algorithms
and data structures.

In this talk, we give an overview of existing software for Gröbner basis computations in free
algebras. We also present f4ncgb [5], a new open-source C++ library for this task. Moreover,
we discuss recent algorithmic improvements that could be integrated into existing tools in the
future, in particular, signature-based algorithms [2] and [6] and support formore general coefficient
domains such as the integers [7].
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10.9 Computing centralizers for linear differential operators

Antonio Jiménez-Pastor
Universidad Politécnica de Madrid, Spain

In this talk we are going to present our recent work [2]. In this work, we are devoted on the
computation and the study of the centralizer of a linear ordinary differential operator Z(L), i.e., the
set of linear differential operators that commute with the given operator L. When the centralizer
is non-trivial, it is a known result that Z(L) is the coordinate ring of a spectral curve.
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Based on Goodearl’s structural result [1] and the concept of almost commuting operators [3],
we provide a new algorithm to compute a filtered basis of the centralizer Z(L) as a C[L]-module for
solutions of the stationary Gelfand-Dickey hierarchies. We also provide a family of examples for
solutions of these hierarchies for operators of order 3, 4 and 5.

All results are implemented in the computer algebra system SageMath [4], within the package
dalgebra.

This is a joint work with Sonia L. Rueda.
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10.10 Undecidability of Noncommutative Ideal Membership and
Counterexamples of Operator Statements

Peter Krug1, Georg Regensburger1 and Clemens Hofstadler2
1 University of Kassel, Germany

2 Johannes Kepler University, Austria

Computations with identities of linear operators can be translated into symbolic computations
with noncommutative polynomials in free algebras. Through this translation, proving the correct-
ness of operator identities reduces to verifying ideal membership of such polynomials [4] and [5].
While verifying ideal membership in free algebras is always possible using noncommutative Gröb-
ner bases, disproving it is in general undecidable [6]. Nevertheless, in practice, one can often refute
ideal membership by constructing explicit counterexamples (in the form of matrices).

In this talk, we first outline the undecidability of the ideal membership problem in free alge-
bras. While one would think that ideals with undecidable membership problem are monstrous,
complicated objects, already Tseitin [2] and [7] provided a simple example of such an ideal, which
we discuss in the talk. We also present a method to compute explicit matrix counterexamples by
combining SAT solving and algebraic techniques (Hensel lifting and rational reconstruction). As
a special case, we discuss how to compute simple counterexamples containing only 0 and ±1 as
entries. These methods are implemented in SageMath as part of the operator_gb package [1]. We
illustrate them on examples coming from the theory of generalized inverses [3].
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10.11 Generalized Gröbner Bases and Dimension Polynomials of
D-modules

Alexander Levin
The Catholic University of America, Washington, DC, USA

We consider several term orderings in a finitely generated free module E over a Weyl alge-
bra An(K) that are associated with a partition of the basic set of variables of An(K). Using these
term orderings, we introduce a new type of reductions in the module E and Gröbner-type bases
associated with these reductions. Properties of the introduced bases allow us to obtain a multi-
variate dimension polynomial of a finitely generated D-module, that is, a left An(K)-module. We
present invariants of such dimension polynomials and prove an intersection property for multi-
variate filtrations in a certain class of D-modules. The obtained results generalize theorems on
bivariate Bernstein-type dimension polynomials proved in [1] and reveal new characteristics of
finitely generated D-modules.
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10.12 Combining Sparsity and Symmetry Exploitation for SOS-
Certificates

Tobias Metzlaff
LAAS-CNRS, France

Based on joint work with I. Klep (Ljubljana), V. Magron (Toulouse) and J. Wang (Beijing) and
supported by QuantERA II ERA-NET European Union’s Horizon 2020 research and innovation
programme COMPUTE.

SOS-Certificates

LetA be a graded real ∗-algebra. Given f ∈ A, a sums-of-squares (SOS) certificate is a representation
of f in the form

f =
∑

t

qt q∗t

with finitely many qt ∈ A.

83

https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-67821
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-67821
https://igorklep.github.io/
https://homepages.laas.fr/vmagron/
https://wangjie212.github.io/jiewang/
https://quantera.eu/compute/


ALGEBRAIC AND ALGORITHMIC ASPECTS OF DIFFERENTIAL AND INTEGRAL OPERATORS

As a historical motivation, we take Hilbert’s proof from 1888 that every nonnegative homoge-
neous polynomial f ∈ A = R[X] = R[X1, . . . ,Xn] (with ∗ the identity) of degree 2r can be written as
a sum of squares if and only if (n, 2r) ∈ {(2, 2r), (n, 2), (3, 4)}. The first example however of a non-
negative polynomial which is not a sum of squares was given later in 1967 by Motzkin, indicating
that it is far from trivial to find an explicit SOS-certificate (or to disprove its existence).

Theorems that state the existence of an SOS-certificate are called Positivstellensätze, see for
example [7] and [9], and enable solving computational problems with techniques from real algebra
geometry [3] and [10]. Some applications are polynomial optimization

f∗ = min f(X)
s.t. X ∈ Rn

≥ max λ
s.t. λ ∈ R,

f− λ is SOS in R[X]

(POP)

with f ∈ R[X], see [2], computing a maximal positive invariant set of a dynamical system Ẋ(t) =
f(X(t)), see [1], or verifying Kazhdan’s property (T) for a finitely generated group G, which holds
if and only if

Δ2 − λ Δ is SOS in R[G] (T)

for some λ > 0 with Laplacian Δ, see [6].
Computing an explicit SOS representation can give not only the solution to the problem but

also an optimizer in which the solution is attained. In practice, this often boils down to solving a
semidefinite program (SDP), which is obtained by restricting the degrees of the sums of squares and
constructing a hierarchy of numerical bounds up to a satisfying precision. Naturally, these prob-
lems become very difficult to handle computationally and tools to gain efficiency whilst preserving
numerical accuracy are required.

Symmetry Reduction

Let G be a finite group acting on the algebra A and its subspaces Ar of degree at most r, which are
assumed to be finite dimensional. As a vector space, eachAr (or more precisely its complexification)
has an isotypic decomposition

Ar =
h⊕

i=1

m(i)
r⊕

j=1

V(i)
j ,

where h is the number of irreducible characters of G and m(i)
r are their multiplicities [11]. A vector

space basis admitting this decomposition is called symmetry-adapted. By Schur’s Lemma, we may
choose a total of m(i)

r distinguished basis elements from the i–th component and denote them by
w(i)

j ∈ V(i)
j .

Let f ∈ A be a G-invariant objective function of degree 2 rmin for which we seek an SOS-
certificate in A and denote by RG the Reynolds operator. For r ≥ rmin, we approximate f as

f =
h∑

i=1

RG(q(i)r ) with sums of squares q(i)r = (w(i)
r )t · Q(i)

r · (w(i)
r )∗.

Here, w(i)
r is the vector of basis elements w(i)

j , 1 ≤ j ≤ m(i)
r , and Q(i)

r is a Hermitian positive
semidefinite matrix, that is, q(i)r is a sum of squares in the vector space generated by the w(i)

j , see
[4] and [8].
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Adding Term Sparsity

The term sparsity pattern (tsp) is encoded by a graph with nodes given by a basis for Ar. Without
going into the technical details of the construction of the edges, one can follow [12] to construct a
sequence of binary matrices

B(i)
r,s ⊆ B(i)

r,s+1 ⊆ B(i)
r,s+2 ⊆ . . . ∈ {0, 1}m(i)

r ×m(i)
r ,

such that one only considers sums of squares with term sparsity (TSSOS) of the form

q(i)r,s = (w(i)
r )t · (B(i)

r,s ◦ Q(i)
r ) · (w(i)

r )∗.

Here, ◦ denotes the Hadamard product and s is the sparse order. For example, the graph

1

2 3
is represented by the binary matrix B =

1 1 0
1 1 1
0 1 1


and encodes that basis elements b1, b2, b3 appear in the problem data as b1 b2 or b2 b3, but not
b1 b3.

Symmetric TSSOS Hierarchy

For POP, we obtain a semidefinite lower bound

f∗ ≥ fr,ssos := max λ
s.t. λ ∈ R,

f− λ ∈ SOSG(B(1)
r,s )⊕ . . .⊕ SOSG(B(h)

r,s ),

where SOSG(B(i)
r,s) is the convex cone of sparse G-invariant sums of squares RG(q(i)r,s).

Theorem. For fixed r ≥ rmin, the sequence (fr,ssos)s≥1 is monotonously nondecreasing and converges in
finitely many steps to some fr,∗sos ≤ f∗. For fixed s ≥ 1, the sequence (fr,ssos)r≥rmin is monotonously non-
decreasing. Under additional algebraic assumptions and constraints, one has asymptotic convergence
f∞,∗
sos = f∗.

Conclusion, Work in Progress, Outlook

By symmetry reduction, a matrix representation of a sum of squares is not of size dim(Ar)
2, but

splits into potentially much smaller blocksQ(i)
r of combined size (m(1)

r )2+ . . .+(m(h)
r )2. By sparsity

exploitation, one removes further entries of these matrices according to tsp graphs.
The preprocess of achieving such a reduction involves the computation of a symmetry adapted

basis. However, this basis does not depend on the specific form of the objective function, but
only on the group G and the degree r. Hence, one such preprocess can be reapplied for multiple
problems. Afterwards, computing the reduced SDP is more efficient than the original one.

In the talk, I will quantify these computational gains via benchmarks on a selection of polyno-
mial optimization problems, for which we used the Julia package TSSOS:

https://github.com/wangjie212/TSSOS

We are currently working on the combination of symmetry with further sparsity types, see [5],
and on the generalization of the above convergence result to noncommutative algebras.
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10.13 New algorithm for differential elimination based on sup-
port bound

Yulia Mukhina
École Polytechnique, Institute Polytechnique de Paris, France

Differential elimination refers to finding consequences of a system of differential equations
depending only on a chosen subset of variables. In the context of dynamical modeling, one often
starts with a polynomial dynamical system of the form x′ = g(x) and is interested to obtain the
minimal equation satisfied by a single component of x (for example, x1). Based on the degrees of
the polynomials in g, we give an upper bound on the support of such minimal equation which
can be further used, for example, for computing this equations using an ansatz. We show that our
bound is sharp in “more than half the cases”

10.14 Closed forms of power series with hypergeometric-type
terms

Bertrand Teguia Tabuguia
University of Oxford, UK

This talk focuses on power series representations of univariate D-finite and D-algebraic func-
tions whose general coefficients linearly involve hypergeometric terms. For D-finite functions, we
present an algorithmic improvement over [8] designed to further simplify outputs not in normal
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forms. For D-algebraic (and non-D-finite) functions, we detail an ongoing investigation into detect-
ing closed forms represented as linear polynomials inH[S(n)], whereH is the ring of hypergeometric-
type terms, and S(n) is the nth term of Bernoulli or Euler numbers. The presentation is structured
into these two distinct parts.

Simplifying FPS outputs

f(x)

D-finite representations
Differential equation for f(x),
f(0), f′(0), . . . , f(enough)(0).
Difference equation for a(n),
a(0), a(1), . . . , a(enough).

f(x)

Hypergeometric-type power series∑K
k=1

∑mk−1
i=0

∑∞
n=0 ai(mkn + i)xmkn+i

Input Output

Figure 10.1: The FPS algorithm for hypergeometric-type power series.

Drawing from [5] and [6], this part of the talkwill introduce the computable ring of hypergeometric-
type sequences (H) and showcase its properties using our Maple package. Figure 10.1 provides a
high-level overview of the FPS algorithm, with arrows indicating its key steps. This algorithm is
designed to take a black-box mathematical expression and first construct a D-finite representa-
tion. If successful, it solves the corresponding D-finite recurrence for m-fold hypergeometric term
solutions, ultimately constructing the power series as an appropriate linear combination of these
terms.

Sometimes, the order of the obtained recurrence equation is too small to enable the algorithm to
escape unnecessary splitting fields. The generating function f(x) :=

x(−x4+7x3+6x2+7x+5)
(1−x)4(x2+x+1)

of the OEIS
sequence A208946 is a typical example. The FPS algorithm internally solves a 7th-order recurrence
equation and returns

FPS(f(x), x, n) =
∞∑

n=0

(
−
2 cos

(
2nπ
3

)
3

−
2
√
3 sin

(
2nπ
3

)
9

+
4n3

3
+ 2n2 + n+

2

3

)
xn. (10.17)

An equivalent result is obtained with the Maple command convert/FormalPowerSeries, which
implements a variant of FPS. Using our software from [5], we compute the normal form

HyperTypeSeq : −HTS

(
−
2 cos(2nπ

3
)

3
−

2
√
3 sin(2nπ

3
)

9
, n

)
= −

2χ {modp(n,3)=0}

3
+

2χ {modp(n,3)=2}

3
.

(10.18)
By the correspondence between hypergeometric-type power series and hypergeometric-type

terms, we deduce the simplified closed form below.

f(x) =
∞∑

n=0

(
4n3

3
+ 2n2 + n+

2

3

)
xn − 2

3

∞∑
n=0

x3n +
2

3

∞∑
n=0

x3n+2. (10.19)

D-algebraic series solutions of quadratic ODEs

We aim to consider D-algebraic power series whose general coefficients have the closed form:
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α(n) + β(n) S(n), (10.20)

where α(n), β(n) ∈ H, and (S(n)) is a non-D-finite sequence which has the zero sequence as
a subsequence. The target algorithm assumes that S(n) is known. For example, S(n) could be the
nth Bernoulli number Bn, which has the following properties.

B0 = 1, B2n =
(−1)n+12 (2n)!

(2π)2n
ζ (2n), n ≥ 1, (10.21)

B2n+1 = 0, n ≥ 1. (10.22)

In (10.21), ζ is the Riemann Zeta function. Such a formula is not supposed to be known; what the
algorithm requires is the ability to (efficiently) compute terms of S(n) (Bn in this case). We aim
to recover closed forms of power series involving numbers such as Bernoulli and Euler numbers,
and potentially discover hidden formulae in the form of (10.20). At present, we are investigating
proofs for the correctness of the results. Indeed, the algorithm combines D-finite and D-algebraic
guessing (see [2] to [4]) together with the hypergeometric-type representation algorithm from [5]
and [6].

A simple situation corresponds to when α(n) = 0 in (10.20). In [7], we proposed an approach
to extend the FPS algorithm for non-D-finite functions that satisfy quadratic differential equations.
For f(x) := tan(x), the algorithm uses the following differential equation to return a recursive
formula for the series.

y′′(x)− 2 y(x) y′(x) = 0. (10.23)

Using quadratic guessing [4], one can obtain the same equation from the first few coefficients of
the power series of f(x).

Assuming f(x) =
∑∞

n=0 anxn, we use D-finite guessing from [3] to construct a holonomic re-
currence equation for a2n−1

B2n
, n ≥ 1. Using the guessed recurrence and the initial values we detect

the identity

an =
(−1)

n
2
− 1

2 2n+1 (2n+1 − 1)

(n+ 1) !
χ {n≡1 mod 2}B2n, n ≥ 1, (10.24)

where χ {n≡1 mod 2} is our mathematical notation of interlacement, implemented in Maple with
the notation given in (10.18). The final step is to use quadratic guessing to construct (10.23) from the
first terms of the right-hand side in (10.24) and verify that f(x) satisfies it. This is indeed successful,
and we deduce the classical formula for the tangent power series.

f(x) =
∞∑

n=0

(−1)n4n+1(4n+1 − 1)B2(n+1)

(2(n+ 1))!
x2n+1. (10.25)

When α(n) 6= 0, we investigate shape lemmas related to Ritt factorizations of differential poly-
nomials. Our goal is to construct a specific type of algebraic differential equations satisfied by sums
of D-finite and D-algebraic (and not D-finite) functions. This enables us to determine α(n) from
the nonlinear recursion of α(n)+ β(n) S(n) and the indices where S(n) = 0. A particular challenge
arises when α(n) vanishes at the same indices as S(n), making it difficult to pinpoint the initial
terms of α(n). We mention the work of Gao and Zang [1] on the decomposition of differential
polynomials, which could be relevant for our context and warrants further exploration.
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Keywords: Hypergeometric-type terms, Bernoulli numbers, Euler numbers, quadratic differen-
tial equations, guessing.
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10.15 An algorithmic problem for Nijenhuis Lie algebras

Chia Zargeh
Modern College of Business & Science, Oman

In this work, we address an algoritmic problem for Nijenhuis Lie algebras. We introduce the
concept of HNN-extension for Nijenhuis Lie algebras and employ the Gröbner-Shirshov basis the-
ory for free Nijenhuis Lie algebras to provide an embedding theorem.

The role of the Nijenhuis operator on a Lie algebra has been used in the study of integrability
of nonlinear evolution equations in [1]. In this work, we spread the concept of HNN-extension
which is an important construction in combinatorial group theory to free Nijenhuis Lie algebras.
HNN-extension has been spread to various algebraic structures such as Lie (super)algebras, Leib-
niz algebras, semigroups, and rings. The following presentation exists for HNN-extension of Lie
algebra L:

H = 〈L, t | [t, a] = d(a), for all a ∈ A〉, (10.26)

where d is a derivation map defined on a subalgebra A and t is a new generating letter. We
develop this construction to the case of free Nijenhuis Lie algebras. To this end, we recall the
theory of Gröbner-Shirshov basis for Lie Ω-algebras introduced in [3] and provide a presentation
for HNN-extension of free Nijehuis Lie algebras. As for an application of HNN-extension, we
provide an embedding theorem. It is worth noting that HNN-extension provides alternative proofs
for known embedding theorems, and used in undecidability of Markov properties (see [2] and
references herein).
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10.16 Faster multivariate integration in D-modules

Hadrien Brochet
Inria Saclay, France

Not all integrals can be expressed in closed form using elementary functions, as shown by Liou-
ville’s theorem. In contrast, the integral of a holonomic/D-finite function is always holonomic/D-
finite, that is the integral of a function satisfying sufficiently many linear differential equations
(LDEs) with polynomial coefficients also satisfies such a system of LDEs. This makes the holo-
nomic and D-finite frameworks particularly relevant for symbolic integration.

I will address two central algorithmic problems in this field: the problem of integration with
parameters, where one seeks a differential equation satisfied by a parametric integral, and the
reduction problem, where the goal is to find linear relations between integrals. Two distinct ap-
proaches exist, the D-finite one and the holonomic one. The D-finite approach has been the most
studied one and offers efficient algorithms, but it lacks the full expressivity of the holonomic set-
ting, which can handle a broader class of integrals and particularly those over semi-algebraic sets.
However, the current algorithms developed for the holonomic setting have a prohibitive compu-
tational cost. I will present a new reduction algorithm working in a mixed approach, aiming to
balance the efficiency of D-finiteness with the expressivity of holonomy. This reduction is inspired
by the Griffiths–Dwork method for rational functions [1] and [2] and yields similarly an algorithm
for the problem of parametric integration.

As an application, I will present the computation of a differential equation for the generating
function of 8-regular graphs, which was out of reach so far.

This work was conducted jointly with my PhD advisors, Frédéric Chyzak and Pierre Lairez, and
is based on our paper [3].
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10.17 A Shape Lemma for Ideals of Differential Operators

Manuel Kauers
Johannes Kepler University, Austria

Joint work with Christoph Koutschan and Thibaut Verron.
We will report on a recent joint article with Koutschan and Verron (J. Algebra, 677:448–459,

2025) in which we propose a version of the classical shape lemma for zero-dimensional ideals of
a commutative multivariate polynomial ring to the noncommutative setting of zero- dimensional
ideals in an algebra of differential operators.
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10.18 TheExpansionComplexity of Ultimately Periodic Sequences
over Finite Fields

Yi Zhang
Xi’an Jiaotong-Liverpool University, China

The expansion complexity is a new figure of merit for cryptographic sequences. In this pa-
per, we present an explicit formula of the (irreducible) expansion complexity of ultimately periodic
sequences over finite fields. We also provide improved upper and lower bounds on the N-th ir-
reducible expansion complexity when they are not explicitly determined. In addition, for some
infinite sequences with given nonlinear complexity, a tighter upper bound of their N-th expansion
complexity is given. This a joint work with Zhimin Sun, Xiangyong Zeng, Chunlei Li, and Lin Yi.
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SPECIAL SESSION 11

Sparse Interpolation and Technology

What is known as sparse interpolation in computer algebra, is called exponential analysis in digital
signal processing. A basic algorithm to solve the former is the Ben-Or/Tiwari algorithm, while the
latter problem is often reformulated as a matrix pencil problem. In the past 10 years, the cross
fertilization of properties and algorithms has led to progress in both worlds.

In this special session we discuss some results obtained in real-life applications, as a result of
the connection between sparse interpolation and exponential analysis. Among others we mention:

• Fluorescence Lifetime Imaging (FLIM) andDiffuse Correlation Spectroscopy (DCS) in biomed-
ical engineering,

• Operational Deposit Modelling in finance,
• Uniform Linear Array sparsification and synthesis in antenna engineering,
• Superresolution and Validation in digital signal processing,
• Curve generation in Computer Aided Design (CAD),
• Modelling of key performance metrics for reflector antennas in radioastronomy.

Session organizers

• Wen-shin Lee (University of Stirling, Scotland, UK)
• Anthony O’Hare (University of Stirling, Scotland, UK)
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11.1 Sparse Interpolation in CS&E

Annie Cuyt
University of Stirling, UK

University of Antwerp, Belgium

What is called Sparse Interpolation (SI) in computer algebra is termed Exponential Analysis
(EA) in signal processing. The respective goal is to identify and reconstruct a sparse linear combi-
nation of monomials or a sparse linear combination of exponential functions.

We discuss how SI and EA can cross-fertilize and lead to new results in several Computational
Science and Engineering problem statements. Among other things, we discuss antenna design [6],
torsional vibration, radioastronomymetrics [7], financial time series analysis, fluorescence lifetime
imaging [8], direction of arrival [3], localisation problems [4] and [5], texture analysis [2], radar
imaging [1],…
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11.2 Exponential Analysis for Net Operational Balance Forecast-
ing

Anthony O’Hare
University of Stirling, United Kingdom

The Basel III framework, particularly through its Liquidity Coverage Ratio (LCR) requirement,
obliges banks to hold a minimum amount of high-quality liquid assets based on an estimate of how
much is expected to be withdrawn or ”run of” during a specified period of stress.

Forecasting this minimum level (net operational deposit balances) is critical for effective liquid-
ity management and strategic financial planning. Traditional time series forecasting methods often
rely on assumptions of linearity, stationarity, and the continuation of past patterns. While useful
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for stable environments, they frequently fall short when dealing with the complex, multi-modal,
and often non-linear dynamics of financial data such as net operational deposit balances.

Matrix Pencil and ESPRIT can directly uncover and quantify the fundamental, often complex
and noisy, exponential dynamics that drive these critical financial time series. This leads to more
robust forecasts and a deeper understanding of balance behaviour than what traditional, simpler
methods typically offer.

11.3 A Fast Exponential Analysis and Variable Projection Based
Method for Linear Antenna Array Synthesis

Ramonika Sengupta
Eindhoven University of Technology, The Netherlands

Modern wireless communication systems frequently employ antenna arrays because of their
high gain and beamforming capabilities. With increasing complexity, sparse arrays that utilize
fewer antenna elements are becoming increasingly popular. In this context, exponential analysis
has been explored as a tool for synthesizing linear antenna arrays with reduced element counts.
However, many of these synthesis methods overlook the scan performance of the resulting arrays.
Achieving a wide scan range remains particularly challenging, especially since the synthesized
arrays are typically aperiodic.

In this talk, we explore some possible solutions to improve the scan performance of aperiodic
arrays, using exponential analysis and variable projection. Numerical experiments demonstrate
that with the given techniques it is possible to reduce the elements in an array, while maintaining
a wide scan range for the synthesized array, and with directivity that is comparable to an array
with more elements.

11.4 A new black box GCD algorithm using sparse Hensel lifting
Garrett Paluck

Simon Fraser University, Canada

Let a and b be polynomials in Z[x1, . . . , xn] that are given by black boxes for their evaluation.
We present a new GCD algorithm for recovering the monic GCD g = gcd(a, b) in Q[x1, . . . , xn] in
the sparse representation. Our algorithm recovers g one variable at a time from bivariate images
obtained using bivariate Hensel lifting. We have implemented our algorithm in Maple.

Our algorithm has three practical advantages over previous black box algorithms. First, it is
a modular GCD algorithm; it recovers the rational coefficients in g using Chinese remaindering
and rational number reconstruction. Second, it can easily omit computation of the content of g in a
chosen variable xwhich means it’s faster for applications which need only the primitive part of g in
x. Third, it recovers the square-free factorization of g which means it’s faster when the square-free
factors of g are all smaller than g.

In the talk we’ll present our new GCD algorithm and benchmarks comparing it with previous
work; we compare CPU time and the number of black box probes of the algorithms.
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SPECIAL SESSION 12

Symbolic-Numeric Computation

The integration of symbolic and numeric techniques has become increasingly important in various
fields of computational science and engineering. Symbolic-numeric computation (SNC) combines
the power of exact symbolic manipulation with the efficiency of numerical methods, addressing
complex problems that require both precision and computational scalability. This session aims to
highlight the latest developments and applications of SNC, including hybrid algorithms, efficient
implementations, and interdisciplinary uses. Topics of interest include, but are not limited to:

• Hybrid symbolic-numeric algorithms for solving equations
• Exact and approximate solutions in algebraic geometry
• Symbolic differentiation and numerical integration
• Symbolic-numeric methods for large-scale linear and nonlinear systems
• Applications in data science, machine learning, and optimization
• Symbolic-numeric approaches to differential equations and systems
• Tools, software, and frameworks supporting SNC

This session welcomes contributions that integrate symbolic and numeric techniques, focus on in-
novative methods, theoretical advancements, and practical applications. By bringing together re-
searchers from diverse fields, we aim to encourage discussions on the challenges and opportunities
in hybrid computation. We invite both theoretical and applied work, including novel algorithmic
developments, computational frameworks, and real-world problem-solving approaches that lever-
age the strengths of both symbolic and numeric computation.

Session organizers

• Tülay Ayyıldız (Gebze Technical University, Turkey)
• Fabrice Rouillier (INRIA Paris, France)
• Elias Tsigaridas (INRIA Paris, France)
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12.1 Static bounds for straight-line programs

Joris van der Hoeven, Grégoire Lecerf and Arnaud Minondo1

CNRS, École polytechnique, Institut Polytechnique de Paris, France

How to automatically determine reliable error bounds for a numerical computation? One tra-
ditional approach is to systematically replace floating point approximations by intervals or balls
that are guaranteed to contain the exact numbers one is interested in. However, operations on
intervals or balls are more expensive than operations on floating point numbers, so this approach
involves a non-trivial overhead.

We will present several approaches to remove this overhead, under the assumption that the
function f that we wish to evaluate is given as a straight-line program (SLP). We will first study the
case when the arguments of our function lie in fixed balls. For polynomial SLPs, we next consider
the “global” case where this restriction on the arguments is removed. We will also investigate the
computation of bounds for first and higher order derivatives of f.

12.2 Copositive geometry of Feynman integrals

Máté L. Telek
Max Planck Institute for Mathematics in the Sciences, Germany

Copositive polynomials —that is, polynomials that are nonnegative on the nonnegative real
orthant— are well-studied objects in real algebraic geometry and optimization. We connect these
to the geometry of Feynman integrals in physics. The integral is guaranteed to converge if its
kinematic parameters lie in the interior of the copositive cone.

In this talk, we will discuss several computational methods for certifying whether a given poly-
nomial lies in the copositive cone. In particular, we show that Pólya’s method can always be effec-
tively applied to polynomials arising from Feynman integrals. The talk is based on a recent work
with Bernd Sturmfels.

12.3 Solving bihomogeneous polynomial systems with a zero-
dimensional projection

Matías Bender
Inria - École Polytechnique, France

In this talk, we study bihomogeneous systems defining, non-zero dimensional, biprojective va-
rieties for which the projection onto the first group of variables results in a finite set of points. To
compute (with) the 0-dimensional projection and the corresponding quotient ring, we introduce
linear maps that greatly extend the classical multiplication maps for zero-dimensional systems,
but are not those associated to the elimination ideal; we also call them multiplication maps. We
construct them using linear algebra on the restriction of the ideal to a carefully chosen bidegree
or, if available, from an arbitrary Gröbner bases. The multiplication maps allow us to compute

1Grégoire Lecerf and ArnaudMinondo have been supported by the French ANR-22-CE48-0016 NODE project. Joris
van der Hoeven has been supported by an ERC-2023-ADG grant for the ODELIX project (number 101142171).
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the elimination ideal of the projection, by generalizing FGLM algorithm to bihomogenous, non-
zero dimensional, varieties. We also study their properties, like their minimal polynomials and the
multiplicities of their eigenvalues, and show that we can use the eigenvalues to compute numeri-
cal approximations of the zero-dimensional projection. Finally, we establish a single exponential
complexity bound for computing multiplication maps and Gröbner bases, that we express in terms
of the bidegrees of the generators of the corresponding bihomogeneous ideal. This talk is based on
joint work with Laurent Busé, Carles Checa and Elias Tsigaridas.

12.4 A symbolic-numeric method for certified eigenvalue local-
ization

Baran Solmaz and Tülay Ayyıldız2
Gebze Technical University, Türkiye

Eigenvalues play a crucial role in nearly all areas of applied and theoretical science, with real
eigenvalue locations offering critical insights for stability analysis, resonance phenomena, and
physical system modeling. This work presents a hybrid approach for certified real eigenvalue local-
ization for real matrices, within a computed spectrum. Our approach combines symbolic-numeric
techniques: We integrate Hermite matrix certification with Gershgorin disk analysis and trace-
based eigenvalue bounds. The method provides interval certifications while maintaining computa-
tional efficiency. Then we extend this approach for complex eigenvalues of complex matrices and
obtain certified rectangular regions on the complex plane. We illustrate our approach on numerical
examples

2Tülay Ayyıldız has been supported by the TÜBİTAK Project project number 122F138.

99



SYMBOLIC-NUMERIC COMPUTATION

100



SPECIAL SESSION 13

Advances in Coding Theory: Algebraic, Combinatorial and
Computational Methods

This special session will focus on the interplay between coding theory with special emphasis on
algebraic, combinatorial, and computational methods. These include the exploration of algebraic
and geometric methods for special classes of codes such as algebraic geometry codes, rank-metric
codes, additive codes, and codes with automorphisms. Techniques from Delsarte and Levenshtein
for code families and related combinatorial structures will also be explored. Additionally, the ses-
sion will focus on computer algebra methods for determining the parameters of codes and related
combinatorial structures.

Session organizers

• Peter Boyvalenkov (Bulgarian Academy of Sciences, Bulgaria)
• Cem Güneri (Sabanci University, Turkey)
• Ferruh Özbudak (Sabanci University, Turkey)
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13.1 Characterization of Nearly Self-Orthogonal Quasi-Twisted
Codes and RelatedQuantum Codes

Buket Özkaya
Middle East Technical University, Türkiye

Quasi-twisted codes are used here as the classical ingredients in the so-called Construction X
for quantum error-control codes. The construction utilizes nearly self-orthogonal codes to design
quantum stabilizer codes. We expand the choices of the inner product to also cover the symplectic
and trace-symplectic inner products, in addition to the original Hermitian one. A refined lower
bound on the minimum distance of the resulting quantum codes is established and illustrated. We
report numerous record breaking quantum codes from our randomized search for inclusion in the
updated online database.

13.2 On the complete characterization of a class of permutation
trinomials in characteristic five

Burcu Gülmez Temür
Atılım University, Turkey

Let Fq be a finite field with q elements, where q is a prime power. A polynomial g(x) ∈ Fq[x] is
called a permutation polynomial (PP) over Fq if g(x) is a bijection of Fq.

Due to their simple algebraic structure and extraordinary properties, there has been a great
interest in permutation polynomials with a few terms, such as binomials or trinomials. Permuta-
tion polynomials are also very important in terms of their applications in areas such as cryptog-
raphy, coding theory and combinatorial designs. As far as we know, the studies on permutation
polynomials go back to the work done by Dickson and Hermite (see, [2] and [4]). In this pa-
per, we address an open problem posed by Bai and Xia in [1]. We study polynomials of the form
f(x) = x4q+1+λ1x5q+λ2xq+4 over the finite field F5k , which are not quasi-multiplicative equivalent
to any of the known permutation polynomials in the literature. We find necessary and sufficient
conditions on λ1, λ2 ∈ F5k so that f(x) is a permutation monomial, binomial, or trinomial of F52k .
This is a collaborated work done by Markus Grassl, Ferruh Özbudak, Buket Özkaya and B.G.T.
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13.3 Some constructions of asymptotically optimal cyclic sub-
space codes

Chiara Castello and Paolo Santonastaso
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University of Campania “L. Vanvitelli”, Italy

A constant dimension subspace code C is a subset of the Grassmaniann Gq(n, k) endowed with
the subspace distance. A cyclic subspace code C in Gq(n, k) is union of orbits of subspaces of Fqn

under the action of the multiplicative group of Fqn . In this talk, we introduce a new technique for
constructing cyclic subspace codes with large cardinality and prescribed minimum distance. Using
this new method, we provide new constructions of cyclic subspace codes in the Grassmannian
Gq(n, k), where k | n and n/k is a composite number, with minimum distance 2k− 2 and large size.
Precisely, we prove that the resulting codes have sizes larger than those obtained from previously
known constructions with the same parameters. Furthermore, we prove that our constructions of
cyclic subspace codes asymptotically reach the Johnson bound for infinite values of n/k.

13.4 Scattered trinomials of Fq6[X] in even characteristic

Giovanni Longobardi
University of Naples Federico II, Italy

(joint work with D. Bartoli, G. Marino and M. Timpanella)
In the last decades, Algebraic Geometry over finite fields has emerged as a powerful tool for

investigating various objects closely associated with Galois Geometry, Coding Theory and Cryp-
tography. In this talk, we will show an example of this approach through the study of a family of
scattered polynomials defined over a finite field of even characteristic. Although several families
of scattered polynomials have been investigated in recent years, most of them only exist in odd
characteristics. In particular, in [1] and [2] the authors proved that the trinomial

fc(X) = Xq + Xq3 + cXq5

of Fq6 [X] is scattered under the assumptions that q is odd and c2 + c = 1. However, they explicitly
noted that this is not the case when q is even.
Using tools of Algebraic Geometry in positive characteristic, we explore a different set of conditions
on c under which this trinomial is scattered in the case of even q and we show that when q is
sufficiently large, there are roughly q3 elements c ∈ Fq6 such that fc(X) is scattered.

References
[1] B. Csajbók, G. Marino, F. Zullo. New maximum scattered linear sets of the projective line, Finite Fields Appl.,

54:133-150, 2018.
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13.5 Graph isomorphism and isomorphism of binary matrices
Iliya Bouyukliev and Maria Pashinska-Gadzheva1

Bulgarian Academy of Sciences, Bulgaria

This work explores an adaptation of theWeisfeiler-Leman (WL) algorithm, originally developed
for graph isomorphism testing, to the domain of binary matrices.

1This research is supported by Bulgarian Science Fund under Contract KP-06-H62/2/13.12.2022
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13.6 Enumeration of optimal binary and ternary linear codeswith
different hull dimensions

Stefka Bouyuklieva and Mariya Dzhumalieva-Stoeva2
St. Cyril and St. Methodius University of Veliko Tarnovo, Bulgaria

We present results related to the classification of binary and ternary linear codes, in which the
codes are divided into different groups depending on the dimensions of their hulls. We pay special
attention to some regularities that are noticeable when analyzing the obtained results.

13.7 On a spherical code with 2025 points
Peter Boyvalenkov

Bulgarian Academy of Sciences, Bulgaria

Joint work with Danila Cherkashin and Peter Dragnev
We consider a remarkable spherical code on S21 of cardinality 2025. Forbidding suitable dis-

tances to appear we define a class of so-called T-avoiding codes, where the set T correponds to the
forbidden distances. We prove that this code is maximal when T = (−4/11,−1/44), it is a minimal
spherical 4-design when T is either (−4/11,−1/44) or (−1/44, 7/22), and, finally, it is universally
optimal in the sense of Cohn-Kumar when T is again either (−4/11,−1/44) or (−1/44, 7/22).

13.8 Universal polarization of sharp codes in the Leech lattice
Peter Dragnev3

Purdue University Fort Wayne, USA

Given a spherical code C ⊂ Sn−1 and a potential h, the discrete h-potential of C is given as
Uh(x,C) =

∑
y∈C h(x · y). A spherical τ = 2k − 1 or τ 1/2-design (a τ -design with vanishing

moments of order τ +2 and τ +3), that can be embedded in k or k+1 parallel hyperplanes is called
PULB-optimal, i.e. attains a polarization universal lower bound below. For a PULB-optimal code C
and very broad class of potentials the location of the global minima of Uh(x,C) are universal and
independent of h. Two PULB-optimal codes C and D are called PULB-optimal pair (C,D) if the
universal minima of Uh(x,C) are the points of D and vice versa, the universal minima of Uh(x,D)
are the points of C. We call a PULB-optimal pair maximal if D is the set of all universal minimal of
Uh(x,C) and vice versa. We shall show that some remarkable universally optimal codes embedded
in the Leech lattice give rise to maximal PULB-pairs.

13.9 On the hulls of linear codes
Stefka Bouyuklieva4

St. Cyril and St. Methodius University of Veliko Tarnovo, Bulgaria
2This research is supported by Bulgarian Science Fund under Contracts KP-06-H62/2/13.12.2022 and FSD-31-328-

09/23.04.2025
3Joint work with S. Borodachov, P. Boyvalenkov, D. Hardin, E. Saff, M. Stoyanova
4This research is supported by Bulgarian Science Fund under Contract KP-06-H62/2/13.12.2022
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Some important properties of the hulls of linear codes over different finite fields will be pre-
sented. The numbers of codes of a given length and dimension but different hull dimensions will
be compared. The idea of relative hulls will be discussed.

13.10 Resolutions of cyclic 2-(40,4,1) designs

Svetlana Topalova and Stela Zhelezova5
Bulgarian Academy of Sciences, Bulgaria

Let V be a finite set of v points, and B = {Bj}b
j=1 a finite family of k-element subsets of V, called

blocks. A pair (V,B) is a Steiner system S(2, k, v) (a 2-(v, k, 1) design) if any 2-element subset of V
is contained in exactly one block of B. There are |B| = b = v(v− 1)/k(k− 1) blocks in an S(2, k, v)
and each point is in r = (v− 1)/(k− 1) blocks.

Let (V,B) and (V′,B′) be two Steiner systems S(2, k, v). They are isomorphic if there is a per-
mutation of the points ϕ : V → V′ which maps each block B ∈ B to a block B′ ∈ B′, ϕ(B) = B′. An
authomorphism of an S(2, k, v) is an isomorphism to itself. A Steiner system S(2, k, v) is cyclic if it
has an authomorphism of order v permuting its points in one cycle.

The necessary condition for the existence of an S(2, 4, v) is v ≡ 1, 4(mod 12) and it is sufficient
[4]. A cyclic S(2, 4, v) exists for all possible v except for v = 16, 25, 28 [8].

A parallel class Ri, i = {1, . . . , r} in an S(2, k, v) is a set of v/k blocks which partition the point
set. An S(2, k, v) is resolvable if the collection of its blocks can be partitioned to r parallel classes.
Such a partition is called a resolution. Two resolutions are isomorphic if at least one automorphism
of the underlying Steiner system maps each block of the first resolution to a block of the second
one. An automorphism of a resolution is an isomorphism to itself. A resolvable Steiner system
S(2, 4, v) exists iff v ≡ 4(mod 12) [5].

The most studied Steiner systems are the S(2, 3, v)s known as Steiner triple systems (STS(v)s).
A considerable amount of research has been done on S(2, 4, v)s too. Their resolvability is in the
focus of the present paper.

A cyclic Steiner system can be cyclically resolvable if at least one of its resolutions has an
automorphism permuting the points in one cycle. Such a resolution is called point-cyclic and
can exists for v ≡ k(mod k(k − 1)). The smallest set of parameters which fulfills the necessary
conditions for the existence of cyclically resolvable S(2, 4, v)s is S(2, 4, 40).

There is a construction of cyclically resolvable S(2, k, v)s for v = ku, u - a prime number [3]. The
considered parameters do not match this construction. There are no cyclically resolvable Steiner
systems among the cyclic S(2, 4, 40)s. Resolutions of S(2, k, v)s are of interest in connection with
binary LDPC codes [6]. In that case cyclic Steiner systems are preferable because they might allow
faster decoding. Thus when the point-cyclic resolutions are missing, the other resolutions of the
cyclic S(2, 4, v)s are of particular interest.

There are 10 cyclic S(2, 4, 40)s. One of them is the point-line design of PG(3, 3) with an auto-
morphism group of order 12 130 560. All its 73 343 resolutions have been recently constructed by
Betten [1]. The other nine cyclic S(2, 4, 40)s are with automorphism groups of orders 40, 80, and
160. We establish that three of them have altogether 1160 resolutions. We also investigate their
automorphism groups and orbit structures.

5This research is partially supported by the Bulgarian National Science Fund under Contract No KP-06-
H62/2/13.12.2022.
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Nowadays the role of computers in algebraic combinatorics is important. Computer algebra
systems are used to generate new interesting combinatorial objects and to find some of their useful
properties. GAP (Groups, Algorithms, Programs) [2] is a system designed to consider different
problems in discrete mathematics. Information about some of the known examples of S(2, 4, v)s
can be found in [7], where they are given in the format of the GAP Design package. We use the
group theory functionality of GAP and our own C++ implementations of different algorithms for
the construction of resolutions. This way we obtain all resolutions of the cyclic S(2, 4, 40)s.
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13.11 Girth Analysis ofQuantumQuasi-Cyclic LDPC Codes

Daniel Panario
Carleton University, Canada

Quantum error-correcting codes (QECCs) are vital for safeguarding quantum information from
the detrimental effects of decoherence and quantum noise. This makes them crucial in quantum
computing and communication. While quantum computers have the potential to solve problems
much faster than their classical counterparts [4], they are highly susceptible to errors. Addressing
these errors is a major challenge, and QECCs have become a key strategy to protect quantum infor-
mation. The concept of QECCs was initially introduced in foundational works by Calderbank, Shor,
and Steane [2] and [5]. The Calderbank-Shor-Steane (CSS) framework has provided a cornerstone
for much of the subsequent research in the field.

Quantum quasi-cyclic LDPC (QQC LDPC) codes, like CSS codes have good structure and pop-
ular channel coding schemes. We investigate the use of fully connected quasi-cyclic LDPC (QC-
LDPC) codes to build QQC-LDPC codes. It is known (experimentally) that the girth, that is, the
length of the shortest cycles of the bipartite graph of its parity-check matrix, influences the code
performance.

We prove [1] that QC-LDPC codes with column weight J at least 3, used to construct QQC-
LDPC codes have girth at most 6. We present an efficient and practical method to obtain QQC-
LDPC codes from QC-LDPC codes with g = 8 and J = 2. Then, we extend our method to construct
codes with J = 2 and g = 12, thus reaching the largest possible girth [3].
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13.12 On the minimum distance and covering radius of irredun-
dant orthogonal arrays

Maryam Bajalan
Bulgarian Academy of Sciences, Bulgaria

Joint work with Peter Boyvalenkov
An orthogonal array (OA), denoted by OA(M, n, q, t), is an M × n matrix over an alphabet of

size q such that every selection of t columns contains each possible t-tuple exactly M/qt times. An
irredundant orthogonal array (IrOA) is an OA with the additional property that, in any selection of
n − t columns, all resulting rows are distinct. IrOAs were first introduced by Goyeneche and Ży-
czkowski in 2014 to construct t-uniform quantum states without redundant information. Beyond
their quantum applications, we focus on IrOAs as a combinatorial problem. Using a characteriza-
tion of IrOAs via their minimum distance we prove that for any linear code, either the code itself
or its Euclidean dual forms a linear IrOA. In the special case of self-dual codes, both the code and
its dual yield IrOAs. Moreover, we construct new families of linear IrOAs based on self-dual, Max-
imum Distance Separable (MDS), and MDS-self-dual codes. Finally, we establish bounds on the
minimum distance and covering radius of IrOAs.
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SPECIAL SESSION 14

Finite Fields and Applications

This session’s focus is on the rich and diverse world of finite fields which play a crucial role in
various branches of mathematics like algebra, number theory, combinatorics, finite geometry and
more.

Finite fields also provide the foundation for many aspects of secure and robust communications
in applied areas such as coding theory, cryptography, and information theory.

We aim to bring together a group of researchers to discuss and showcase the latest advance-
ments in the theory, applications and implementations of finite fields.

Session organizers

• Daniel Panario (Carleton University, Canada)
• Theodoulos Garefalakis (University of Crete, Greece)
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14.1 A new tool for differential analysis of functions in charac-
teristic 2

Alev Topuzoğlu
Sabancı University, Turkey

Recent advances in differential cryptanalysis necessitate acquiring increasingly more knowl-
edge of differential properties of S-boxes. Here we present a new tool enabling a detailed differen-
tial analysis of functions G : F2n → F2n .

Given a function G : F2n → F2n , the behavior of DaG, the first derivative of G in the direction
a ∈ F∗

2n = F2n \{0}, where DaG(x) = G(x)+G(x+a), plays a major role in assessing the resistance
of G against the differential attack and its refinements.

A natural way of studying the differential properties of G, as is recently exhibited in [1], is
to consider the so-called difference square corresponding to G, which is defined as follows. By
fixing an ordering of the elements of F2n , therefore putting F2n = {x1 = 0, x2 = 1, . . . , x2n}, it
is the 2n − 1 by 2n array, where the a-th row Δa(G), a ∈ {x2, . . . , x2n}, consists of the derivatives
DaG(x1), . . . ,DaG(x2n). This view point leads to some unexpected new results, for instance, finding
the partial quadruple system associated to G, or the number of vanishing flats with respect to G for
some particular G.

It is shown in [1] that some interesting patterns in difference squares emerge, which motivate
the introduction of a new concept, the APN-defect of G, which can be thought of as measuring the
distance of G to the set of almost perfect nonlinear (APN) functions.

The aim of this talk is to explain how this measure can be used to identify quasi-APN func-
tions, which behave favorably in terms of their differential properties, how to calculate it for some
functions of interest, and why a careful study of difference squares may lead to the construction
of new APN functions.

This is joint work with Nurdagül Anbar and Tekgül Kalaycı.
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14.2 Algebraic and SAT Methods for Classes of Covering Arrays
Dimitris E. Simos

Salzburg University of Applied Sciences, Austria

In this work, we survey the current state-of-the-art for the generation of classes of covering
arrays, such as optimal and sequence covering arrays, using methods originating from computer
algebra as well as their hybridization with SAT solvers. Covering arrays are discrete structures
where all t-way interactions of input parameters are covered up to a strength t and they are used
in various fields of computer science, software engineering and cyber security among others. Se-
quence covering arrays consist of sequences, such that all subsequences with pairwise different
entries of some length are covered, sharing similar properties like covering arrays, where they
originate from the necessity of defining a rigorous mathematical structure in event-based testing.
Concrete instances of covering arrays for given parameters will arise as points in a generated va-
riety of a system of multivariate polynomial equations with Groebner Bases playing an important
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role [1]. In addition, for sequence covering arrays, we will provide various algebraic models taking
the form of multivariate polynomial systems of equations and are then processed via supercomput-
ing by a Groebner Basis solver in order to compute solutions from them [2]. For the cases where
theoretical constructions on a tuple-modelling level are not possible, we will employ various SAT
encodings in conjunction with greedy techniques (e.g. IPO-strategy [3]). We conclude with the
current open problems for generation of (sequence) covering arrays which lie in the intersection
of discrete mathematics, computer algebra and applied computer science.

References

[1] B. Garn and D.E. Simos. Algebraic Modelling of Covering Arrays. ACA ’15: Applications of Computer Algebra,
Springer Proceedings in Mathematics and Statistics, pp.149–170, 2017.

[2] M. Koelbing, B. Garn, E. Iurlano, I.S. Kotsireas and D.E. Simos. Algebraic and SAT models for SCA generation.
Applicable Algebra in Engineering, Communication and Computing, 36:173–222, 2025.

[3] I. Hiess, L .Kampel, M.Wagner and D.E. Simos. IPO-MAXSAT:The In-Parameter-Order Strategy combinedwith
MaxSAT solving for Covering Array Generation. SYNASC ’22: Proceedings of the 24th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, pp. 71–79, 2022.

14.3 Automatic Sequences Along Polynomial Subsequences and
Their Applications

Ísabel Pirsic and Domingo Gómez-Pérez
Universidad de Cantabria, Spain

Pseudorandom sequences are crucial in various fields, particularly in cryptography. These se-
quences, which must exhibit high entropy and efficient implementation, are essential for gener-
ating nonces, session keys, and parameters in cryptographic systems, among other uses. Due to
their deterministic nature, pseudorandom sequences can be analyzed to identify regularities and
understand potential weaknesses in the form of patterns.

Automatic sequences are families of sequences generated by formal automata. This category
includes, but is not limited to, Thue-Morse, Rudin-Shapiro and paper folding sequences. In this
talk, we introduce a new general family, the CAP sequences, which encompasses many previously
studied sequences. We then explore the problem of studying polynomial subsequences of these
sequences, specifically when they become constant. Additionally, we consider the converse prob-
lem: given a polynomial, determine a nontrivial CAP sequence which becomes constant on that
polynomial.

Thus we exhibit the necessity to understand well the automatic sequence family to which the
polynomial subsequence paradigm is applied for cryptographic purposes.

We conclude the presentation with a software implementation and some open problems.

14.4 Further results on covering radii of some codes and their
connections

Ferruh Özbudak
Sabancı University, Turkiye
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The covering radius is a basic geometric parameter of a code. It has various applications, includ-
ing decoding, data compression, testing, write-oncememories, and combinatorics in general. There
are important connections to arithmetic and geometry over finite fields. In this paper, we survey
some of the recent results, provide some new results and explain some aspects of the connections
to the arithmetic and geometry over finite fields.

The research of Ferruh Özbudak is supported by TÜBİTAK under Grant 223N065

14.5 Normal and primitive normal elements with prescribed tra-
ces in intermediate extensions of finite fields

Giorgos Kapetanakis
University of Thessaly, Greece

In this talk, I will first present a joint work with A.C. Mazumder and D.K. Basnet, where we
study the existence and distribution of elements in finite field extensions with prescribed traces
in several intermediate extensions that are also either normal or primitive normal. In the former
case, we fully characterize the conditions under which such elements exist and provide an explicit
enumeration of these elements and, in the latter case, we provide asymptotic results.

Then, I will briefly discuss possible applications of these techniques and results to other finite
field problems.

14.6 Quadratic-like permutations over Fn
2

Irene Villa
University of Trento, Italy

Among the so-called (Boolean) (n,m)-functions, F : Fn
2 → Fm

2 , those that are balanced present
a particular interest in discrete mathematics. Among balanced functions, those such that m = n,
that is, (n, n)-permutations, are of a still more specific interest.

In this work, we study the class of permutations whose component functions all admit a deriva-
tive equal to constant function 1 (this property itself implies balancedness). We call these functions
quadratic-like permutations, since all permutation of degree 2 have this property. We study this
class of functions, showing that we can have quadratic-like permutations of degree greater than
2 and we can have permutations not quadratic-like. We analyse how the property behaves under
some equivalence transformations, and we study the “reversed” property: every derivative in a
nonzero direction has a component function equal to constant function 1. We study some known
classes of permutations, such as Feistel permutations, crooked permutations and power permu-
tations, and we show that many of them satisfy this property (and also the “reversed” one). We
provide also some primary and secondary constructions of quadratic-like permutations.

This is a joint work with Claude Carlet.

14.7 Invariant Polynomials and Cyclic Line Spreads
John Sheekey

University College Dublin, Ireland
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Flag-transitive linear spaces have been fully classified for all but a small class of possible auto-
morphism groups. For one of the remaining open cases, which arise from line-spreads fixed by a
cyclic group, Bamberg and Pauley showed an equivalent characterisation in terms of polynomials
P(x) ∈ Fq2 over a finite field with certain properties. The requirements on P(x) are very similar,
though not identical, to requirements for a related polynomial to define a permutation.

In [1] we fully solved the case of cubic polynomials using this approach. Key to the method
involved the factorisation of a related two-variable polynomial HP(z,w), or plane curve. In this
work we study the case of polynomials of arbitrary degree which define a flag-transitive linear
space. We focus on the case where the aforementioned HP(z,w) splits into factors of low degree.

We show that this requires that P(x) is invariant under certain elements [Ψ] of PGL(2,Fq).
Polynomials of this form have been well-studied, from Stichtenoth-Topuzoglu, through Brochero
Martinez-Garefalakis-Reis-Tzanaki, and beyond. In [2], [3] we prove further necessary conditions
on [Ψ] and P(x), construct new families generalising those of Feng-Lu, and classify some small
degrees. We will present some remaining open problems.

References
[1] Cian Jameson and John Sheekey. Cyclic 2-Spreads in V(6, q) and Flag-Transitive Affine Linear Spaces, Finite

Fields and their Applications, 98:102463, 2024.
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14.8 Nilpotent linearized polynomials and applications
Lucas Reis

Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

We introduce and investigate nilpotent linearized polynomials (NLPs) over finite fields, ex-
amining their arithmetic properties as well as structural aspects derived from linear algebra. In
particular, we present a method for constructing permutations of finite fields using NLPs and ana-
lyze the properties of these permutations, including cycle decomposition and the presence of fixed
points. Special attention is given to the case of binary fields (fields of characteristic two), where we
develop a systematic approach for generating NLPs (and thus permutations) by leveraging trace
orthogonal bases.

14.9 New covering arrays of strength-4 and q symbols from three
truncated Möbius planes in PG(3, q), for odd prime power q

Lucia Moura
University of Ottawa, Canada

A strength-t covering array of size N, denoted by CA(N; t, k, v), is an N × k array over a v-set
of symbols such that for any t-set of columns, each t-tuple occurs at least once in a row. Raaphorst
et al. [3] construct a CA(2q3 − 1; 3, q2 + q + 1, q) from two projective planes, PG(2, q), on the
same set of points such that any line in one plane intersects any line in the other plane in at most
2 points. In [2], Colbourn et al. call two such projective planes “orthogoval”; they study sets of
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mutually orthogoval projective and affine planes, and discuss their connections to covering arrays.
The covering arrays in [3] still hold the record of best size for these parameters for any prime power
q ≥ 4 [1].

Our present work extends the result by Raaphorst et al. to construct arrays of strength 4. A
k-cap in a projective geometry is a set of k points no three of which are collinear. In PG(3, q), an
ovoid is a maximum-sized k-capwith k = q2+1. Its plane sections (circles) form a 3-(q2+1, q+1, 1)
design, called a Möbius plane of order q. For q an odd prime power, we prove the existence of three
truncated Möbius planes, such that for any choice of circles from each plane, their intersection size
is at most three. From this, we construct a strength-4 covering array CA(3q4 − 2; 4, q2+1

2
, q), for

every odd prime power q. For q ≥ 11, these covering arrays improve the size of the best-known
covering arrays with the same parameters by ∼ 25% [1]. These arrays can be easily constructed
using linear-feedback shift-register sequences over finite fields. This is joint work with Kianoosh
Shokri and Brett Stevens.
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14.10 Factoring Multilinear Boolean Polynomials
Michael Monagan

Simon Fraser University, Canada

We present two new algorithms for factoring multilinear boolean polynomials. The first is a
Monte Carlo algorithm. The second is a deterministic algorithm based on recursive GCD com-
putations. We’ve implemented both algorithms in C and also Emelyanov and Ponomaryov’s FDE
algorithm for comparison. Our Monte Carlo algorithm is much faster than their FED algorithm
and our GCD algorithm is much faster than our Monte Carlo algorithm. But we do not know the
complexity of our GCD algorithm.

14.11 On constructing bent functions from cyclotomic mappings
Qiang Wang

Carleton University, Canada

A Boolean function f in n variables with f(0) = 0 is bent if and only if the Cayley graph defined
on Zn

2 by the support of a Boolean function is a strongly regular with parameters (22n, 22n−1 +
ε2n−1, 22n−2 + ε2n−1, 22n−2 + ε2n−1), ε = ±1. These bent functions are known as maximally non-
linear, which are as different as possible from the set of all linear and affine functions when mea-
sured by Hamming distance between truth tables. In this talk, we discuss some generic construc-
tion of Boolean bent functions from cyclotomic mappings. In particular, three generic construc-
tions from this new perspective are obtained by considering Dillon functions, Niho functions and
Kasami functions as different branch functions respectively. As a result, several infinite classes
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of bent functions belonging to the PSap class, class H and the completed MM class are derived,
thereby providing simple representations of known classes of bent functions through cyclotomic
mappings. Moreover, computer experiments show that examples of bent functions outside these
three well-known classes can also be obtained by selecting other branch functions.

14.12 Bent partitions, vectorial dual-bent functions, and associ-
ation schemes

Tekgül Kalaycı
University of Klagenfurt, Austria

The recently introduced generalized semifield spreads are bent partitions of Fpm × Fpm , which
are constructed from presemifields with a certain property, called right Fpk-linearity. Bent parti-
tions have similar properties as spreads. In particular they yield a large number of bent functions
and amorphic association schemes. We show that with right Fpk-linear presemifields, one can ob-
tain a large variety of vectorial dual-bent functions, which yield association schemes that are not
necessarily amorphic. More generally, we show that for 1 < s ≤ m, vectorial dual-bent functions
from V(p)

2m to V(p)
s , whose components are either all regular or all weakly regular but not regular,

give rise to ps-class association schemes on V(p)
2m.
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SPECIAL SESSION 15

Reliable numerical computing and differential equations

One of the key advantages of computer algebra and symbolic computation is the mathematical
exactness of all computed results. This session concerns a similar goal of exact mathematical com-
putations for objects of a more analytic nature, through numerical approximations with provable
error bounds. One particularly important application concerns the reliable integration of differ-
ential equations and the reliable evaluation of special functions. More generally, topics of interest
include, but are not limited to:

• Logical foundations of reliable computation.
• Interval and ball arithmetic.
• High performance implementations of reliable algorithms.
• Reliable evaluation of special functions.
• Reliable integration of dynamical systems.
• Reliable homotopy continuation.
• Effective computations with analytic functions.
• Other applications of reliable computation.
• Mathematical software for reliable computations.

We welcome both theoretical and practical contributions as well as applications. The scope is wide
and intended to encourage discussions and new collaborations during the conference.

Session organizers

• Joris van der Hoeven (CNRS, École polytechnique, France)
• Grégoire Lecerf (CNRS, École polytechnique, France)
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15.1 Proudfoot-Speyer degenerations of scattering equations
Barbara Betti, Viktoriia Borovik, Simon Telen

Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

We study scattering equations of hyperplane arrangements from the perspective of combina-
torial commutative algebra and numerical algebraic geometry. We formulate the problem as linear
equations on a reciprocal linear space and develop a degeneration-based homotopy algorithm for
solving them. We apply our methods to CHY scattering equations and discuss applications with
particle physics.

15.2 Vector-friendly numbers with n-word precision
Fredrik Johansson

Inria & IMB (UMR 5251), France

In many computer algebra applications, we need to reliably manipulate vectors or matrices of
real or complex numbers with “medium” precision, e.g. in the range 20 to 1000 digits. We present an
implementation of floating-point vectors optimized for this task in FLINT and discuss extensions
to ball arithmetic.

15.3 Logical Completeness of Differential Equations
Long Qian

Carnegie Mellon University, USA

Differential equations are fundamental across many disciplines, frequently used in modelling
systemswith continuous dynamics. It is therefore important to be able to correctly prove properties
of differential equations, especially in safety-critical situations. Concretely, let x′ = f(x) be a n-
dimensional differential equation with ϕ(x, t) : Rn × R → Rn denoting its flow (assuming global
existence for brevity). For a set of initial values I ⊆ Rn and a time interval [0, T], common properties
of interest include:

• Safety: Let S ⊆ Rn be a set of safe values, is it true that for every x0 ∈ I, the trajectory of x0
following x′ = f(x) stays in S on the time interval [0, T]? I.e. is the following formula valid?

∀x0 ∈ I ∀t ∈ [0, T] φ(x0, t) ∈ S

• Liveness: Let G ⊆ Rn be a set of goal values, is it true that for every x0 ∈ I, the trajectory
of x0 following x′ = f(x) reaches G on the time interval [0, T]? I.e. is the following formula
valid?

∀x0 ∈ I ∃t ∈ [0, T] φ(x0, t) ∈ G

One approach to validating such properties is to proceed quantitatively, computing numerical
approximations to the reachable sets. However, the correctness of suchmethods are generally diffi-
cult to guarantee due to their numerical nature. Alternatively, one can also take a more qualitative
approach, where a (small) set of general axioms concerning differential equations are proven to
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be valid, and properties of ODEs are established deductively by iteratively applying such axioms.
Consequently, the correctness of such proofs only depend on the validity of a small set of core ax-
ioms, and can be independently verified by theorem provers implementing this logical framework
[1]. This logical system is called differential dynamic logic [2].

However, as such qualitative axioms are symbolic and qualitative, they are seemingly less ca-
pable than quantitative approaches at validating inherently numerical properties of differential
equations. Naturally, one can ask for which class of properties can such qualitative axioms vali-
date? Equivalently, is differential dynamic logic complete for certain class of properties? In joint
work with André Platzer [3], we show that completeness for safety and liveness properties hold
when the sets in question I, S,G are all first-order definable, I is compact and S,G both open.
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15.4 Braid monodromy computations using certified path track-
ing

Alexandre Guillemot, Pierre Lairez
Inria Saclay, France

Let f ∈ C[t, x]. The set of roots of f in x when t moves continuously along a loop in C defines
a braid, provided that t avoids a certain set of critical values. Artin proved that braids can be de-
scribed in terms of elementary generators, and our goal is to compute such a decomposition for
the braid induced by the displacement of the roots of f. Starting with the algebraic input f, we first
numerically track its roots using certified homotopy continuation. This procedure outputs disjoint
tubular neighborhoods each containing a strand of the induced braid. Although this output is by
nature numerical, we can recover the braid expressed in terms of Artin’s generators from it. This
discrete description is certified, even though the intermediate step involves numerical computa-
tions. We provide a Rust implementation of the second step that can be piped with Algpath, a
certified path tracking software, allowing for certified braid monodromy computations.

15.5 Somechallenges and applications for continuation methods
for solving algebraic systems

Fabrice Rouillier
Inria Paris, France
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In this contribution, we describe some recent applications where we have combined symbolic
and numerical methods for applications in robotics and control theory. The main focus is on solv-
ing algebraic systems while guaranteeing the result, i.e., the real nature of the solutions and their
uniqueness in a region, or on certifying real-time methods with strict constraints on their im-
plementation, or on certifying robot movements in a given workspace. We have deployed basic
continuation methods (Newton+Kantorovitch for certification) and we hope, through this talk, to
motivate the community to propose more efficient or easier-to-use methods.
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Solving Matrix and Tensor Equations

The researches on the solvability conditions and the structural representations of solutions to ma-
trix and tensor equations have been one of the important topics in algebra for a long time. Nowa-
days as one important part of contemporary mathematics, matrix and tensor equations are widely
and heavily used in many areas such as computer vision, data mining, system and control theory,
and information science. No matter concerning the development of matrix and tensor theory or
solving practical problems, further studying on solutions for matrix and tensor equations is essen-
tial.

The topics in this special session mainly focus on the solvability conditions, general and nu-
meric solutions, structural representations and extremal ranks of the solutions to some matrix and
tensor algebraic equations and coupled generalized Sylvester matrix (tensor) equations over vari-
ous algebraic structures including fields, quaternions and general rings. Moreover, we will explore
efficient symbolic and numeric computing algorithms for finding solutions and their applications
in image processing, system and control theory, etc.

This special session will be an important opportunity for experts in linear algebra, matrix and
tensor theory, ring theory and computer science to exchange ideas, problems and work together.

Session organizers

• Dragana Cvetkovic Ilic (Department of Mathematics, University of Nis, Serbia)
• Qingwen Wang (Department of Mathematics, Shanghai University, Shanghai, China)
• Yang Zhang (Department of Mathematics, University of Manitoba, Winnipeg, Canada)
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16.1 On minor prime factorization for rank-deficient multivari-
ate polynomial matrices

Dingkang Wang
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

Multivariate polynomial matrices are fundamental objects in symbolic computation and com-
mutative algebra, and their associated factorization problems have long constituted important re-
search topics in fields such as multidimensional systems and signal processing. Building on Youla
and Gnavi’s analysis of the structural theory for multidimensional systems in the 1970s, factor-
izations of multivariate polynomial matrices have become a key research direction for mathemati-
cians and engineers. Minor prime factorization of multivariate polynomial matrices is a critical
subproblem in this area, where factorization algorithms for bivariate polynomial matrices play an
important role in mu-basis computation for rational parametric surfaces. We focus on minor prime
factorization of rank-deficient multivariate polynomial matrices. We first establish an algebraic re-
lationship between a rank-deficient polynomial matrix and its arbitrary row-full-rank submatrix.
Subsequently, a necessary and sufficient condition for the existence of minor prime factorization
in the rank-deficient case is rigorously derived. Finally, an algorithm is presented, accompanied by
experimental results demonstrating its computational efficiency. This is a joint work with Dong
Lu.

16.2 The generalized hand-eye calibration equation and its ap-
plication

Qing-Wen Wang
Shanghai University, P. R. China

In the field of robotics research, a crucial applied problem is the hand-eye calibration issue,
which involves solving the matrix equation AX = YB. However, this matrix equation is merely a
specific case of the generalized Sylvester-type dual quaternionmatrix equationAX−YB = C, which
also holds significant applications in system and control theory. Therefore, we in this talk establish
the solvability conditions of this generalized Sylvester-type dual quaternion matrix equation and
provide a general expression for its solutions when it is solvable. As an example of applications, we
design a scheme for color image encryption and decryption based on the generalized Sylvester-type
dual quaternion matrix equation. From the experiment, it can be observed that the decrypted im-
ages are almost identical to the original images. Therefore, the encryption and decryption scheme
designed using this dual quaternion matrix equation is highly feasible.

16.3 Fixed-TimeTensorGradientNeural Network forOnline Syl-
vester Tensor Equation Solving

Mengyan Xie
Shanghai Ocean University, P. R. China
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This presentation introduces a fixed-time convergent Tensor Gradient-based Neural Network
(TGNN) model for real-time resolution of the generalized Sylvester tensor equation:

N∑
n=1

X (t)×n An = B

in real-time applications. The key innovation lies in a newly designed activation function that guar-
antees fixed-time convergence, rigorously proven through theoretical analysis. We systematically
compare this activation function with four existing nonlinear alternatives under the TGNN frame-
work, providing tight upper bounds for their convergence times. Numerical experiments on two
benchmark problems demonstrate the superior convergence speed and computational robustness
of our method.

16.4 The Aα-spectral radius of uniform hypergraphs
Xiao-Dong Zhang

Shanghai Jiao Tong University, P. R. China

For a k-uniform hypergraph G, let D(G) and A(G) be the diagonal tensor and the adjacency
tensor of G, respectively.The Aα-spectral radius of G is defined as the spectral radius of the tensor
Aα(G) = αD(G) + (1 − α)A(G), where 0 ≤ α < 1. In this talk, we establish some sharp lower
and upper bounds for the Aα-spectral radius of a connected k-uniform hypergraph. This work is
joined with Peng-Li Zhang (Shanghai University of International Business and Economics).

16.5 Solving reduced biquaternion tensor equations and applica-
tions

Yang Zhang
University of Manitoba, Canada

We first develop an algorithm for computing the singular value decomposition (SVD) of a third-
order reduced biquaternion tensor via a new Ht-product. As theoretical applications, we define the
Moore-Penrose inverse of a third-order reduced biquaternion tensor and consider its characteri-
zations via its SVD. Using Moore-Penrose inverses, we mainly discuss the general (or Hermitian)
solutions to reduced biquaternion tensor equation A ∗Ht X = B as well as its least-squares solu-
tions. Finally, we develop two novel fast algorithms and apply them in color video compression
and deblurring, both of which perform better than the compared algorithms, especially in CPU
Time. This is a joint work with Cui-E Yu, Xin Liu, and Hui Luo.
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SPECIAL SESSION 17

Combinatorial and Geometrical Methods in Contemporary Coding
Theory

The theory of error-correcting codes has inspired many mathematicians who were interested in
applying techniques from algebra and discrete mathematics in order to progress on questions in
information processing. Coding theory lies at the intersection of several disciplines in pure and
applied mathematics such as algebra, number theory, probability theory, statistics, combinatorics,
complexity theory, and statistical physics, which all have helped in the past to increase our knowl-
edge in communication theory. The design of error-correcting codes for the reliable transmission of
information across noisy channels plays a crucial role in the modern era due to the massive over-
all communication traffic. To this aim, it has been necessary to develop sophisticated algebraic,
combinatorial and geometric tools in order to construct codes that can correct as many errors as
possible in a very efficient way.

This session is focused on the application of computer algebra to coding theory which, together
with classical and new methods from combinatorics and geometry, can be used to obtain several
and important results, such as construction of optimal codes, definition of efficient encoding and
decoding algorithms and the study of algebraic, geometric and combinatorial problems arising from
practical problems in coding theory. We wish to invite talks about recent results and developments
in coding theory, including but not restricted to:

• Algebraic coding theory
• Rank/sum-rank metric codes
• Algebraic geometry codes
• Graph theory methods in coding theory
• Convolutional codes
• Quantum codes
• Algebraic decoding algorithms
• Combinatorial algorithms
• Computational results
• Related algebraic and combinatorial structures
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Session organizers

• Gianira N. Alfarano (University of Rennes, France)
• Giovanni Longobardi (Università degli Studi di Napoli Federico II, Italy)
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17.1 Hamming weight distributions of linear simplex codes over
finite chain rings and their Gray map

Cristina Fernández-Córdoba, Sergi Sánchez-Aragón and Mercè Villanueva
Universitat Autònoma de Barcelona, Spain

A linear code of length n over a finite chain ring R with residue field Fq is a R-submodule of Rn.
A R-linear code is a code over Fq (not necessarily linear) which is the generalized Gray map image
of a linear code over R. In this work, we present the construction of linear simplex codes over
R and their corresponding R-linear codes of type α and β . Moreover, we show the fundamental
parameters of these codes as well as their complete weight distributions. We also study whether
these simplex codes are optimal with respect to the Griesmer-type bound.

17.2 Construction of LDPC convolutional codes from Latin squa-
res

Elisa Junghans
TU Ilmenau, Germany

Low-density parity-check (LDPC) codes are known for their capacity approaching performance
with message passing algorithms as well as their low encoding and decoding complexity. These
properties can be generalized for (time-varying) convolutional codes. For the decoding algorithms
to perform well, it is desirable to maximize the girth of the associated Tanner graph. While it is
possible to find well-performing LDPC codes via random search, it is still desirable to construct
such codes that additionally allow for some kind of compact representation in order to store them
efficiently.

We present a construction for periodically time-varying LDPC convolutional codes using a
special class of orthogonal Latin squares. To achieve a girth up to 12, we apply several lifting
steps to the original construction. This construction depends only on the Latin squares and well-
determined lifting steps. This allows for a very compact representation of these codes.

17.3 Construction of partial unit-memoryMDP convolutional co-
des with low encoding and decoding complexity

Julia Lieb
TU Ilmenau, Germany

Maximum Distance Profile (MDP) convolutional codes are error-correcting codes that can cor-
rect a maximum amount of errors for a specific delay constraint. To minimize encoding and decod-
ing complexity when using MDP codes, researchers have been trying to construct these codes over
possibly small finite fields, which turns out to be a difficult task. However, up to our knowledge,
other aspects influencing complexity have not been investigated yet.

We present constructions for partial unit-memory MDP codes with reduced encoding and de-
coding complexity via structured and sparse generator matrices over small finite fields. In particu-
lar, we present a matrix completion framework that extends a structured MDS matrix over a small
field to a sparse sliding generator matrix of an MDP code.
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This is joint work with Sakshi Dang, Okko Makkonen, Pedro Soto and Alex Sprintson.

17.4 Equivalences of rank distance codes
Valentino Smaldore

Università degli Studi di Padova, Italy

This paper investigates the equivalence issue for rank distance codes in Fn×n
q of dimension 2n.

The techniques used involve the analysis of the corresponding linearized polynomials. Indeed,
under certain assumptions, the right idealizer of the code is isomorphic to the algebra of 2 × 2
matrices stabilizing the graph of the polynomial in the affine plane AG(2, qn).

17.5 On some properties of the Gray map
Anna-Lena Horlemann, Adrien Pasquereau and Carlos Vela Cabello

University of St. Gallen, Switzerland

We discuss the properties of the Gray map and its generalizations. Within our new framework,
one can recover many well-known properties of the Gray map, but also identify some original
behaviors. First, we show that the Gray map can be factored as a mapping to a multivariate poly-
nomial ring followed by an evaluation over a projective point set. This provides an interpretation
of the Gray map in terms of evaluation of functions. Under this association, it follows that the
linearity defect of the image of the code, e.g., its rank and its kernel (in the nonlinear sense), can
be characterized by the structure of this set of functions. In particular, we derive some local prin-
ciples that allow to reduce the study of the image code to a shortened code over a logarithmically
smaller support. In parallel, we pay a specific attention to the practical costs for manipulating these
invariants: for example, we provide a very efficient algorithm to invert the Gray map.

17.6 Characteristic polynomial of linearized polynomials
Luca Bastioni

University of South Florida, USA

Let q be a prime power, and Fq be the finite field with q elements. Let m, n, r be positive inte-
gers. A polynomial of the form L(Z) =

∑r
i=0 aiZqi ∈ Fqm [Z] is called a linearized polynomial. This

type of polynomials is particularly important in coding theory, specifically for the theory of rank-
metric codes, where they are used to construct a fundamental family of maximum rank-distance
(MRD) codes, called Gabidulin codes. Linearized polynomials are also deeply connected to Drinfeld
module’s theory and recently, as shown in [1], such connection has been used to construct a new
infinite family of optimal rank-metric codes with rank-locality, improving some previous param-
eters and divisibility conditions present in the construction of [3]. Therefore, it comes natural to
investigate properties of linearized polynomials in more depth and in terms of Drinfeld modules.
An obvious property is that each linearized polynomial can be seen as an Fq-linear map, and so
it makes sense to talk about the characteristic polynomial of a linearized polynomial. In this talk,
we show how the theory of Drinfeld modules, together with the theory of linear recurrence se-
quences, can be used to compute the characteristic polynomial C(n)

L of the Fq-linear map associated
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to a linearized polynomial L ∈ Fqm [Z] acting on an extension Fqmn of Fqm . Then, we provide a new
algorithm to compute C(n)

L , and we show that its running time is O(n log2(n)) in terms of Fq op-
erations. This means that, when n � 0, our algorithm outperforms any other standard algorithm
known in literature, since they instead have a running time of O(nω log(n)) where 2 ≤ ω ≤ 3 (see
for example [4] ⁇).
This is a joint work with Giacomo Micheli and Shujun Zhao.
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17.7 Towards the classification of scattered binomials
Francesco Ghiandoni

University of Perugia, Italy

Joint work with Daniele Bartoli, Alessandro Giannoni and Giuseppe Marino.
Let f be an Fq-linear function over Fqn . If U = {(x, f(x)) : x ∈ Fqn} defines a maximum scattered

Fq-subspace of Fqn × Fqn , f is said to be a scattered polynomial. So far, very few examples of such
polynomials are known for each value of n and q. In particular, the only known families of scattered
binomials are

(LP) f(x) = δxqs
+ xqn−s

, with gcd(s, n) = 1 and δ (qn−1)/(q−1) 6= 1;

(CMPZ) f(x) = δxqs
+ xqn/2+s

, for n = 6, 8 and certain choices of δ .

In this talk, we will show that, at least when n is a prime integer, scattered binomials are of LP type
only. Finally, a classification of scattered binomials over Fqn for n ≤ 8 is exhibited.
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17.8 The geometry of one-weight linear rank-metric codes

Alessandro Neri
University of Naples Federico II, Italy

A one-weight code is an error-correcting code in which all the nonzero codewords have the
same weight. In 1984, Bonisoli provided a classification of one-weight linear codes by leveraging
the connection between codes equipped with the Hamming metric and projective systems, which
represent their geometric counterparts. More recently, similar geometric techniques have been
applied to the study of codes in the rank metric with maximum left idealizer. In this talk, we
discuss general one-weight linear rank-metric codes without any further assumption. This is done
by exploiting a new geometric framework based on the tensor representation of linear rank-metric
codes. This is a joint work with Gianira N. Alfarano and Martino Borello.

17.9 Codes deriving from some subvarieties of the Segre variety

Valentina Pepe
Sapienza University of Rome, Italy

Let K be the Galois field Fqt of order qt, q = pe, p a prime, A = Aut(K) be the automorphism
group of K and σ = (σ 0, . . . , σ d−1) ∈ Ad, d ≥ 1. The following generalization of the Veronese
map is studied:

νd,σ : 〈v〉 ∈ PG(n− 1,K) −→ 〈vσ0 ⊗ vσ1 ⊗ · · · ⊗ vσd−1〉 ∈ PG(nd − 1,K).

We investigate the link between such points sets and a linear code Cd,σ that can be associated to
the variety, obtaining examples of MDS and almost MDS codes.

This is a joint work with N. Durante and G. Longobardi.
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17.10 Quantum LDPC codes and decoding challenges

Tefjol Pllaha
University of South Florida, USA

Quantum Low-Density Parity-Check codes are promising candidates for scalable, fault-tolerant
quantum computing. Represented by sparse parity check matrices, these codes share challenges
with their classical counterparts —iterative decoding can fail to converge, may converge to an
erroneous estimate, or return degenerate errors. In this talk, we will examine the structure of
failure inducing sets (sets of nodes that, when initially in error, result in a decoding failure), and
how the chosen graph representation may affect the presence of these sets.
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17.11 Lattices over Non-Archimedean Fields and Their Applica-
tions to Coding Theory

Michael Schaller
University of Zurich, Switzerland

In this talk we will introduce lattices over non-archimedean fields following the work of Mahler
[1] and Lenstra [2]. Welch and Scholtz [3] showed that the Berlekamp-Massey algorithm is closely
related to continued fractions over the rational function field. It is well known for the real numbers
that continued fractions are closely related to lattices. We will reinterpret the article of Welch and
Scholtz in terms of lattice reduction over non-archimedean fields and then wewill explore the work
of Cohn and Heninger [4] on list decoding from the lattice point of view.
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17.12 On the minimum weight of some geometric codes
Rocco Trombetti

University of Naples Federico II, Italy

(A joint work with: Bence Csajbók, Giovanni Longobardi and Giuseppe Marino)
Assume p is a prime andm, h are two positive integers. Let Σ = PG(m, q) be them-dimensional

projective space over the Galois field Fq where q = ph, and denote by the symbol DΣ(m, q) the
2−(v, q+1, 1) design of points and lines of Σ; hence, with v = qm+1−1

q−1
. The p-ary code C = CΣ(m, q)

associated with such a design is the Fp-subspace generated by the incidence vectors of the blocks
of the corresponding design. Also, the dual C⊥ of C is the Fp-subspace of vectors of Fv

q which are
orthogonal to all vectors of C (under the standard inner product). These are particular examples of
so called geometric codes.

Unlike for codes derived from the designs of points and subspaces of Σ, the situation regarding
the minimumweight of geometric codes is not as clear, and therefore its study is more challenging.
In [3] the authors reduced this problem to the above mentioned case of points and lines of a pro-
jective space of suitable dimension. In [1] Bagchi and Inamdar proven that the minimum weight
of C⊥

Σ (m, q) is bounded from below by the value 2
(

qm−1
q−1

(
1− 1

p

)
+ 1

p

)
.

This type of problem in coding theory can be quite naturally translated into one concerningwith
the cardinality of sets or multi-sets of points in projective or affine space with special intersection
properties with respect to certain subspaces, as shown for instance in [2]. Using this geometrical
approach and exploiting properties of certain kind of polynomial, in this talk, we will show a
significant improvement of the bound stated in 2002 by Bagchi and Inamdar, in the case when
h > 1, and m, p > 2.
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SPECIAL SESSION 18

Noncommutative Symbolic Computation

Symbolic computation plays an important role in the study of many important functions and their
special values. By constructing noncommutative formal series based on words using these sym-
bols, one can often discover key properties of these functions and values in a uniform way. On the
other hand, noncommutative formal series can be considered as a generalization of language the-
ory in theoretical computer science. As the algorithms and combinatorics of these series is based
on those of words, these two fields naturally reinforce each other. They form an ideal framework
for developing software based on computer algebra systems with rigor and efficiency. In particu-
lar, they allow the symbolic manipulation of several classes of special functions (such as Eulerian
functions, hypergeometric functions, hyperlogarithms, harmonic sums, etc.) and of special values
involved in solutions of differential equations. We invite contributions with the following topics:

• Combinatorial Indexing and Calculus
• Ecalle’s Mould Calculus
• Free Lie Algebras
• Hopf Algebras and Their Combinatorics
• Noncommutative Differential Equations
• Multiple Zeta Values (or Zeta Polymorphism) and Polylogarithms
• Representative functions (Sweedler’s duals and their combinatorics)

Session organizers

• Gérard H.E. Duchamp (Sorbonne University - Paris Nord, France)
• Vincel Hoang Ngoc Minh (University of Lille, France)
• Hiroaki Nakamura (Osaka University, Japan)
• Jianqiang Zhao (The Bishop’s School, USA)
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18.1 Various products of representative series and some applica-
tions

Van Chien BUI
University of Sciences, Hue University, Vietnam

Special functions such as polyzetas, multiple harmonic sums and polylogarithms are defined
over Hr := {(s1, . . . , sr) ∈ Nr

≥1, s1 > 1}. Polyzetas values are given by the formula:

ζ (s1, . . . , sr) =
∑

n1>...>nr>0

n−s1
1 . . . n−sr

r , (18.1)

polylogarithms (denoted (Lis1,...,sr) with sj ≥ 1, r ≥ 1) and multiple harmonic sums (denoted
(Hs1,...,sr) with sj ≥ 1, r ≥ 1). They are defined as follows (with n ∈ N≥1):

Lis1,...,sr(z) =
∑

n1>···>nr>0

n−s1
1 . . . n−sr

r zn1 (18.2)

and
Hs1,...,sr(n) =

∑
n≥n1>···>nr>0

n−s1
1 . . . n−sr

r . (18.3)

They are compatible with algebraic structures of quasi-shuffle products, in some different cases of
the parameter q:

u 1Y∗ = 1Y∗ u = u, yiu yjv = yi(u yjv) + yj(yiu v) + qyi+j(u v), (18.4)

where ε is the empty word, yi, yj, yi+j are letters of the alphabet Y = {yk}k∈N≥1
, and u, v are words

in the monoid Y∗.
For a commutative ring A containing the field of rational numbers Q, we examine the set of

noncommutative formal series, denoted by A〈〈X 〉〉. Within this set, representative series, that are
closed under various products, form a module. This is a central focus of our research.

In this presentation, we will delve into how to factorize and decompose these noncommutative
rational series and explore their relevance to theoretical computer science.
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18.2 Extension by continuity of the domain of Poly- and Hyper-
logarithms

Gérard H.E. Duchamp
IHP and LIPN, Paris Sorbonne City, France

Motivated by the continuation of polylogarithms which is better understood through (im-
proper) iterated integrals and noncommutative differential equations (with asymptotic initial con-
dition), we extend by continuity the initial domain of indexation of Poly- (and Hyper-) logarithms.
Remarking that the codomain of the Li arrow is a nuclear space, we observe that this new domain
is a shuffle subalgebra of the algebra of noncommutative series. This method can be applied mu-
tatis mutandis to hyperlogarithms. If time permits, we give further insights and applications in
particular by substitution of remarkable representative series.

18.3 Various bialgebras of representative functions on free mo-
noids

V. Hoang Ngoc Minh
University of Lille, France

Factorization and decomposition of representative functions with values in a (commutative)
ring A and on a free monoid X ∗, generated by an (infinite or infinite) alphabet X , are equiva-
lent to factorization and decomposition of their graphs, viewed as noncommutative rational series
admitting linear representations.

To factorize and to decompose these graphs we examine various products (as concatenation,
shuffle and its commutative ϕ-deformations) of noncommutative series (over X ∗ with values in
A) and coproducts which are such that their associated non graded bialgebras, on a field K, are
isomorphic to the Sweedler’s dual of the graded noncommutative co-commutative K-bialgebra of
polynomials having only Kleene stars of the plane as characters, for concatenation. Moreover, the
A-subalgebra of Kleene stars of the plane is closed by these various products.

18.4 Families of eulerian functions involved in regularization of
divergent polyzetas

Ngo Quoc Hoan
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Hanoi University of Science and Technology, Viet Nam

For any r ∈ N≥1 and (s1, . . . , sr) ∈ Cr, let us consider the following several variable zeta function
(polyzetas) [3] ζ (s1, . . . , sr) :=

∑
n1>...>nr>0

n−s1
1 . . . n−sr

r which converges for (s1, . . . , sr) in the open

sub-domain of Cr [2] and [6], Hr := {(s1, . . . , sr) ∈ Cr | ∀m = 1, . . . , r,
m∑

i=1

Re(si) > m}. From

Weierstrass factorization and Newton-Girard identity [3] and [4], one has successively

1

Γ(z+ 1)
= eγz

∏
n≥1

(
1 +

z
n

)
e−

z
n = exp

(
γz−

∑
k≥2

ζ (k)
(−z)k

k

)
(18.5)

where Γ(z) defines the Gamma function. One can deduce the following expression for ζ (2k):

ζ (2k)
π2k = k

k∑
l=1

(−1)k+l

l

∑
n1,...,nl≥1

n1+...+nl=k

l∏
i=1

1

Γ(2ni + 2)
∈ Q. (18.6)

The formula (18.6) is a different version of a result of L. Euler using Bernoulli numbers

ζ (2k)
π2k =

(−1)k+122k−1B2k

(2k)!
, k ∈ N.

In this talk, based on the combinatorics of noncommutative generating series, we discuss a way to
extend the formula (18.5) and then we present a recurrence relation of ζ (2k, . . . , 2k), k ∈ N∗. This
is based on join works with Prof. Hoang Ngoc Minh and Prof. Gérard Duchamp [4].
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18.5 Unramified Variants of Motivic Multiple Zeta Values
Jianqiang Zhao

The Bishop’s School, USA

In this talk we shall consider a few variants of the motivic multiple zeta values of level two
by restricting the summation indices in the definition of multiple zeta values to some fixed parity
patterns. These include Hoffman’s multiple t-values, Kaneko and Tsumura’s multiple T-values, and
the multiple S-values studied previously by Prof. Ce XU and the speaker. We will explain how to
use Brown and Glanois’s descent theory to determine some ramified and unramified families of
motivic versions of these values. Assuming Grothendieck’s period conjecture, our results partially
confirm a conjecture of Kaneko and Tsumura about when multiple T-values can be expressed as a
rational linear combination of multiple zeta values (i.e., unramified) if their depth is less than four.
We will propose some unsolved problems at the end of the talk. This is a joint work with Prof. C.
Xu.
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18.6 A combinatorial property ofmultiple polylogarithms at non-
positive indices

K. Kitamura
University of Osaka, Japan

The (double) shuffle relations for multiple polylogarithms at positive indices are well-known
and have very beautiful properties. On the other hand, there are some analogy such as [1],[2]
and [3] for MPL at non-positive (or general) indices. In this talk, we will show a new formula on
products of MPL at non-positive indices in view of [4], and we will give some applications.
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18.7 On Kashiwara-Vergne Lie algebra and double shuffle Lie al-
gebra in mould theory

Nao Komiyama
Osaka University, Japan

In 2012, Schneps ([6]) showed that there exists an embedding between the double shuffle Lie
algebra introduced by Racinet ([4]) and the Kashiwara-Vergne Lie algebra introduced by Alekseev
and Torossian ([1]). In the proof of this embedding, a relation called the senary relation is used,
which is a notion introduced in Ecalle’s study ([2]) of multiple zeta values using mould theory. On
Lie algebras and embeddings above, bigraded or elliptic versions have also been studied ([3], [5]).
In my talk, I will explain the above topics and recent topic ([7]) as much as time permits.
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18.8 Multiple Divided Bernoulli Polynomials and Numbers
Olivier Bouillot

Gustave Eiffel University, France

This work defines multiple divided Bernoulli polynomials by solving a system of difference
equations that generalizes the classical Bernoulli case. These polynomials are required to span an
algebra whose product matches the M basis of QSym. Although not unique, an explicit and notable
solution is constructed using the reflection equation for Bernoulli polynomials.

18.9 Goncharov’s programme, and symmetries of weight 6 mul-
tiple polylogarithms

Steven Charlton
Max Planck Institute for Mathematics, Germany

Multiple polylogarithms Lik1,...,kd(x1, . . . , xd) are a class of multi-variable special functions gen-
eralising the natural logarithm Li1(x) = − log(1 − x). These functions appear in connection with
K-theory, hyperbolic geometry, values of L-functions, mixed Tate motives, high-energy physic,
and many other areas.

One of the main challenges in the study of MPL’s revolves around understanding on howmany
variables a MPL (or ‘interesting’ combinations thereof) actually depend (“the depth”). It is well
known, for example, that Li1,1 can already be expressed via Li2, likewise Li1,1,1 can be expressed
via Li3. Goncharov gave a conjectural criterion (“the Depth Conjecture”) to determine this, using
the motivic coproduct, as part of his programme to investigate Zagier’s Polylogarithm Conjecture
on the special values of the Dedekind zeta function ζ F(m).

I will give an overview of Goncharov’s Depth Conjecture, and its implications. I will discuss
what is currently known, including recent progress in weight 6. In particular, the conjecture pre-
dicts that a certain weight 6 function (essentially a small modification of Li4,1,1(x, y, z)) should
satisfy the 6-fold dilogarithm symmetries λ 7→ λ−1, 1− λ in each variable independently, modulo
depth ≤ 2 terms.

I will then describe the computational background and tools involved in investigating and prov-
ing these symmetries. In particular, one has to consider many possible degenerations (to boundary
components of M0,n) of the Matveiakin-Rudenko quadrangular polylogarithm functional equa-
tions, to iteratively find weaker symmetries of Li4,1,1 and useful short identities. To investigate
higher weight analogues will require a more structure approach and understanding of this degen-
eration process.

18.10 A generalization of Magnus duality
Vu NGUYEN DINH

University of Science and Technology of Hanoi, Viet Nam
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Let X be the finite graded set X = B + Z (where B = {b1, . . . , bM} and Z = {z1, . . . , zN}) and
K being a fixed ring. In this talk, we first review a Zinbiel bialgebra structure over the associative
algebraK〈X〉 and its graded dual studied in [1], [2] and [5]. We then use the concept of the classical
Lazard elimination to construct a K-linear basis of K〈X〉 which is called Magnus basis [3]. As the
main purpose, we will explain how to use these generalized bialgebra structures over K〈X〉 to
provide combinatorial tools in order to obtain the duality of Magnus basis. We claim that the
duality can be automatically approached to any graded set X = B + Z where B = {bγ}γ∈Γ and
Z = {zλ}λ∈Λ (Γ,Λ are nonempty index sets). In case X = B + Z where B = {x0} and Z = {xλ}λ∈Λ
(Λ: a nonempty index set, for exampleN+), theMagnus duality was appeared in [4],Theorem 3.2 to
derive a formula of Le-Murakami, Furusho type that expresses arbitrary coefficients of a group-like
series J ∈ K〈〈x0, x1〉〉 in terms of the “regular” coefficients of J ([4], Theorem 4.1).

This is based on join works with Prof. Gerard Duchamp and Prof. Vincel Hoang Ngoc Minh
[6].
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18.11 Multiplicative structure of some multivariate functions

Jean-Yves Enjalbert
Lycée Jean-Batiste Corort, France

We will examine various families of multivariate functions, including the well-known multivariate
functions.

ζ (s1; . . . ; sn) =
∑

n1>...>nr>0

1

ns1
1 . . . nsr

r

For each family, we propose an efficient coding on an alphabet X, and transfer the multiplicative
laws of their algebras to the alphabet X using the ϕ-stuffle ⊔⊔ϕ , defined recursively by:

∀(a, b) ∈ X2, ∀(u, v) ∈ (X∗)2 , au⊔⊔ϕvb = a(u⊔⊔ϕbv) + b(au⊔⊔ϕv) + ϕ(a, b)(u⊔⊔ϕv) ,

The following will be studied:

- the explanation of ϕ according to various contexts.

- the conditions on ϕ to benefit from Radford’s theorem, i.e., having a transcendence basis on the
algebra generated by the family considered. Note that the basis is given explicitly, with a
construction method allowing an efficient implementation of the algebra.

139



NONCOMMUTATIVE SYMBOLIC COMPUTATION

- the conditions on ϕ to determine the possibility of dualizing the mixing law, and therefore of a
Hopf algebra structure.

The study will conclude by returning to the families introduced in the introduction.
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